

CA API Management OAuth Toolkit 4.3

 CA API Management OAuth Toolkit 4.3

Table of Contents

Release Notes...4
Download OTK Installation Files..10
Product Accessibility Features.. 12
Architecture...14
Installation Workflow... 17

Create or Upgrade the OTK Database... 17
MySQL Database.. 22
Oracle Database... 24
Apache Cassandra Database... 25

Create Database Connections.. 26
Install the OAuth Solution Kit...28

Dual Gateway Scenario.. 33
Install OTK with API Portal Integration...38

Post-Installation Tasks...46
Post-Installation Tasks for the Dual Gateway Scenario... 50
Update Custom 3.x or 4.0.00 Policies Containing the Decode Json Web Token...52

Configure Authentication.. 54
Token Configuration.. 55

Configure JWT Access Tokens..58
Client Authentication... 65
Create FIP Authentication for Dual Gateways... 66
Login and Consent Behavior.. 68
Multiple Session Support.. 78
Support Custom Grant Types... 79
Support Optional Authentication Mechanisms..82
Support the SAML Grant Type... 88

Verify the Installation... 90
Run the OAuth 2.0 Test Client... 92
Verify the OAuth Infrastructure... 95

Troubleshooting..97
Upgrade the OTK... 98
Uninstall the OTK...102
Prepare JSON Message for Export..103

JSON Message Example... 104
Secure an API Endpoint with OAuth 2.0... 109

 2

 CA API Management OAuth Toolkit 4.3

OAuth Request Scenarios...111
Customizing the OAuth ToolKit..119

Customizing Policies... 119
Configure Token Lifetime Properties... 120
Client-Specific Customization...121
Configure the Authorization Server... 126
Configure PKCE Support.. 133
Provide Enhanced HTML Form Security... 134
Customize Caches..135
Set an Alternative HTTPS Port... 141

Registering Clients with the OAuth Manager... 145
Manage OAuth Clients with CA API Portal... 153
APIs and Assertions.. 155

OAuth Server API Endpoints.. 156
OAuth Toolkit APIs...156

OAuth Validation Point (OVP) API..156
CORS Support for OTK APIs... 158

OAuth Client Assertions..159
Encapsulated Assertions...162
Error Codes...168

Database Maintenance...198
OpenID Connect Implementation... 200

Open ID Connect Implementation Details... 201
Generate and Validate an ID Token..205
OpenID Connect Discovery...209
Dynamic Registration...212
Retrieve the JSON Web Key Set (JWKS).. 216
Use a Dedicated Private Key for Signing JWT... 216

OTK User Role Configuration...220
Tutorials... 221
Documentation Legal Notice.. 222

 3

 CA API Management OAuth Toolkit 4.3

Release Notes
These Release Notes contain the following details for the CA API Management OAuth Toolkit (OTK):

What's New in OTK Version 4.3

OTK 4.3.1 CR02

The OTK 4.3.1 CR02 release includes OTK 4.3.1 CR01 and additional fixes. The otk.port cluster property is now editable
and the issue with an unwanted JSON Schema Validation Warning with OTK read-only fragment has been resolved. For
more information, see Resolved Issues.

OTK 4.3.1 CR01

The OTK 4.3.1 CR01 release replaces OTK 4.3.1 and includes fixes related to issues with scope issuing
vulnerability, id_token lookup, and the Client and Client key based custom refresh token. For more information, see
Resolved Issues.

OTK 4.3.1

The OTK 4.3.1 contains OTK 4.3 CR01 and additional fixes. For more information, see Resolved Issues.

OTK 4.3 CR01

The OTK 4.3 CR01 release replaces OTK 4.3.00 and contains a critical fix for DE380449. For more information, see
Resolved Issues.

OTK 4.3.0

The following sections describe new features, updates to current functionality, and resolutions to known issues. For more
information, see Resolved Issues.

Feature/Change Notes
JWT Access Token Generation and Validation The OTK now supports issuing and validating two types of access

tokens: UUID and JWT. This allows for token validation without the
need to call the authorization server.

The 256 character length limitation for access tokens has been
removed.

Note: The JWT access token is not currently supported by the CA
Mobile API Gateway.

See Token Configuration.

 4

 CA API Management OAuth Toolkit 4.3

JWT Client Credentials Support The following functions were added to support client
authentication using JWT assertion:
• Two new client authentication methods using JWT are

supported: client_secret_jwt and private_key_jwt
• Client authentication method can be registered for each client

through OpenID Connection dynamic registration and through
OAuthManager. If not specified, client_secret_basic will be
used.

• OAuth Manager supports either jwks or jwks_uri as valid inputs
when a private key JWT is selected as the authentication
method. If jwks is specified, JSON is validated. This allows
registration and management of clients using private_key_jwt
for client authentication.

See Dynamic Registration.
Maximum Characters increased for scope, shared secret, and
client_id

The scope field now accepts a maximum of 4000 characters.
Previously, the maximum was 450 characters.
The client_secret field now accepts a maximum of 255
characters. Previously, the maximum was 32 characters.
The client_id field now accepts a maximum of 255 characters.
Previously, the maximum was 32 characters.

Cassandra Database Performance Improvements Changes made to improve performance of token queries on
Cassandra databases.

Separated Solution Kits for Persistence Layer The following new solution kits were added to the
OAuthSolutionKit.sskar file:
• OTK Assertions – Installs the OTK Assertions server module

file that contains custom assertions required by OTK policies
• Portal Persistence Layer: Cassandra – Enables an OTK with

Cassandra to integrate with an API Portal
• Portal Persistence Layer: MySQL or Oracle – Enables an OTK

with MySQL or Oracle to integrate with an API Portal
See Install the OAuth Solution Kit.

Cassandra Pagination Previously, for Cassandra OTK database installations, OAuth
Manager support was limited to a single page displaying a
maximum number of 100 clients or client tokens.
Now, navigation across multiple pages is supported and allows
you to view and manage all your clients or tokens. The limit per
page remains at 100 entries. For more information, see DE350742
in the Known Issues section.

OAuth 1.0 support has ended OAuth 1.0 was deprecated in previous releases with limited
support. It is now not supported.

Product Compatibility

The following table shows the latest OAuth Toolkit versions and CA product compatibility. All minor versions (CRs) are
supported as part of major releases.

CA Mobile
API Gateway

CA API
Management
OAuth Toolkit

CA API Gateway
Mobile SDK

for CA Mobile
API Gateway

Mobile Developer
Console

4.2 4.3.1, 4.2 10.0, 9.4, 9.3 2.0, 1.9, 1.8, 1.7, 1.6 1.2, 1.1, 1.0***
4.1* 4.3.1, 4.2 9.4, 9.3 2.0, 1.9, 1.8, 1.7, 1.6 1.2, 1.1, 1.0***
4.0 4.1, 4.0 9.2 2.0, 1.9, 1.8, 1.7, 1.6,

1.5, 1.4
1.0

 5

 CA API Management OAuth Toolkit 4.3

CA Mobile
API Gateway

CA API
Management
OAuth Toolkit

CA API Gateway
Mobile SDK

for CA Mobile
API Gateway

Mobile Developer
Console

3.3 3.6 9.2, 9.1** 1.9, 1.8, 1.7, 1.6, 1.3 x
3.2 3.5 9.1 1.9, 1.8, 1.7, 1.6, 1.2 x

* Requires software compatibility patch. For MAG 4.1 to be compatible with OTK 4.3.1, run the compatibility patch. For
more information, see Download OTK Installation Files.

** Cassandra 3.x is not supported in CA API Gateway 9.1.x.

*** Mobile Developer Console (MDC) does not work with OTK 4.3.1

EOS Schedule

EOS Date Product Versions

January 6, 2021 OTK 3.x, 4.0, 4.1
MAG 3.x, 4.0, 4.1
SDK 1.x

OTK 4.3 Database Support

We have certified that OTK works with Community and Standard Editions of MySQL, we recommend you to evaluate
Enterprise Edition to get enterprise-grade features, tools, and extensive support for the database from Oracle.

Oracle MySQL Cassandra

Oracle 11g MySQL Server 5.5.x Apache Cassandra 3.x
Oracle 12c MySQL Server 5.7.x

For database scripts, see Download OTK Installation Files.

NOTE

Upgrading to CA API Gateway version 9.3 updates the Gateway database to MySQL Server 5.7.x.

Resolved Issues

OTK 4.3.1 CR02
The following table lists issues that existed in previous releases and are fixed in release OTK 4.3.1 CR02

Reference Description
DE415409 Resolved an issue where the otk.port cluster property was read-

only for new installations. The otk.port cluster property is now
editable.

DE398040 Resolved an issue where an unwanted JSON Schema
Validation Warning with OTK read-only fragment was generated
by the internal Gateway policies and was shown in the application
logs.

 6

 CA API Management OAuth Toolkit 4.3

OTK 4.3.1 CR01
The following table lists issues that existed in previous releases and are fixed in release OTK 4.3.1 CR01

Reference Description
DE396519 Resolved an issue where under specific conditions, the scope that

was granted to an access token was not the scope that the client
was registered for.

DE401634 Resolved an issue with custom refresh token. Client and Client
key based custom refresh token behavior did not work.

DE394845 Resolved an issue with user authentication. An OTK id_token
lookup was performed by default by the OTK User Authentication
policy, using the client_id and resource_owner. A call to /oauth/
tokenstore/jwt_lookup always failed with a 500 status since there
was no JWT in cases where OpenID was not being used.

OTK 4.3.1
The following table lists issues that existed in previous releases and are fixed in release OTK 4.3.1.

Reference Description
DE365800 Resolved an issue with Single Gateway configuration with

Cassandra and server hostname set to localhost. The
configuration resulted in failure of getting a new access token
using refresh token grant after the previous access token has
expired.

DE368517 Resolved an issue where OAuth Client custom field was
overwritten when the client was edited from SaaS Portal.

DE373572 Resolved an issue with an Oracle database where users could not
query /oauth/clientstore endpoint to retrieve a client using only a
client_key.

OTK 4.3 CR01

The following table lists issues that existed in previous releases and are fixed in release OTK 4.3 CR01.

Reference Description
DE380449 OTK FIP Client Authentication is not failing by default.Refer to the

OTK 4.3 CR01 proactive notification for details.
The workaround for existing users who have Storage APIs and
OAuth Validation Point installed is as follows:
1. Open the policy OTK FIP Client Authentication Extension.
2. Enable policy on line 4. It is a disabled assertion ‘At least one

assertion must evaluate to true’.

OTK 4.3.0
The following table lists issues that existed in previous releases and are fixed in release OTK 4.3.0.

Reference Description
DE348167 Resolved an issue with incorrect "All assertions must evaluate to

true" assertion in /portal/storage API.

 7

 CA API Management OAuth Toolkit 4.3

Known Issues

The following issues exist in release OTK 4.3.1.

Reference Description

DE378315 When the OTK database is empty, the OAuth manager fails on
login and returns an invalid request error message.
Workaround: Populate the database with some test data, either
by an API call or a database script and then log in again. For
example, the OTK_test_data.sql file from OTK installer will add
OAuth test clients. Remove the test clients before going into
production.

MST-138
DE242803

OTK returns session status to an unauthorized client. When a
user has two client apps registered and one of the apps requests
a session status from the server using the other client app's
id_token, the server responds with a status 200.

DE241609 Invalid GET method allowed on /oauth/tokenstore/store endpoint.
MST-534 Updating an OAuth client to have the same name and org as

an existing client fails as expected, however, a misleading error
message occurs.

MST-466 The OAuth Manager accepts invalid JSON content for custom
fields if the content starts with valid JSON formatting. The invalid
JSON is accepted and saved. No validation error occurs.

MST-50 OTK Token DB Get returns all tokens if token_status is set to
empty. Expected behavior is an empty result.

DE350742 When using Cassandra database in OAuthManager, the following
combinations are supported.
Client_keys filtering and pagination:
• Registered_by, status
• Client_ident
• No filters
Client_keys filtering with no pagination:
• Registered_by, client_ident
Clients filtering and pagination:
• Registered_by
• No filters
Clients filtering with no pagination:
• Name, organization
• Name
• Organization
• Client_ident
• Client_key
Other combinations are not supported.

Additional Resources and Contacts

Click any of the following links for additional information related to the OAuth Toolkit and API Management.

Support

• CA Support
• CA API Management Community
• OAuth Blog on Communities

 8

https://www.broadcom.com/support/services-support
https://community.broadcom.com/home
https://community.broadcom.com/blogs/oauth

 CA API Management OAuth Toolkit 4.3

Related Product Introductions

API Management Product Pages

 9

https://www.broadcom.com/products/software/api-management

 CA API Management OAuth Toolkit 4.3

Download OTK Installation Files
This topic explains how to download OTK Installation Files.

This page includes:

• Instructions on how to download the latest CA API Management OAuth Toolkit 4.3.1 CR01 installation file from the
support site

• Database files for creating a new OTK database
• Version-specific database files for upgrading an existing OTK database to the latest version
• Compatibility patches for integrating OTK with additional products

This page does not describe how to use these files. For installation instructions, see Installation Workflow.

How to get the CA API Management OAuth Toolkit

The OTK 4.3.1 CR01 release is available at CA API Gateway Solutions & Patches page.

The entire CA API Management OAuth Toolkit is available as an OTK_Installers_version-build.zip file.

For example

The file contains:

• OAuthSolutionKit-version-build.sskar
• Database scripts
• Any upgrade Compatibility Patches

To download the OAuth Toolkit:

1. Go to CA API Gateway Solutions & Patches.
2. Click Sign In and provide your login credentials.
3. Navigate to the CA API Gateway OAuth Toolkit section.
4. Click the link to download the zip file.

Database Creation and Upgrade Files

Right-click the file links to download the file. Alternatively, you can use the files provided in the download package zip file
from the support site.

Create a New Database

Use the following scripts to create a new database. For instructions, follow the Installation Workflow.

 Database Creation Scripts and Test Data
 MySQL Oracle Cassandra

 #unique_9

 #unique_10

 #unique_11

 #unique_12

 #unique_13

 #unique_14

 10

https://techdocs.broadcom.com/us/product-content//recommended-reading/technical-document-index/ca-api-gateway-solutions-and-patches.html
https://support.ca.com/us/product-content/recommended-reading/technical-document-index/ca-api-gateway-solutions-and-patches.html
https://support.ca.com/us/product-content/recommended-reading/technical-document-index/ca-api-gateway-solutions-and-patches.html

 CA API Management OAuth Toolkit 4.3

Upgrade an Existing Database

Use the following scripts to upgrade an existng database. To upgrade an existing database, start with the script
corresponding to your current OTK version, then work up the list, executing all scripts until you reach the latest
version. For instructions, follow the Installation Workflow.

Individual Database Upgrade Scripts
 MySQL Oracle Cassandra

 #unique_15 #unique_16 #unique_17

 #unique_18 #unique_19 #unique_20

 #unique_21 #unique_22 #unique_23

 #unique_24 #unique_25 #unique_26
 #unique_27
 #unique_28

 #unique_29 #unique_30 #unique_31
#unique_32

 #unique_33 #unique_34 #unique_35
 #unique_36 #unique_37 #unique_38
 #unique_39 #unique_40 #unique_41
 #unique_42 #unique_43 #unique_44
 #unique_45 #unique_46 #unique_47
 #unique_48 #unique_49 #unique_50
 #unique_51 #unique_52 #unique_53
 #unique_54 #unique_55 #unique_56
 #unique_57 upgrade_otk3.0-otk3.1.1_oracle.sql #unique_59
 #unique_60 #unique_61
 #unique_62 #unique_63
 #unique_64

Compatibility Patch

The following table provides scripts to use OTK 4.3 with the CA Mobile API Gateway (MAG) version 4.1. Click and
download the scripts from the links.

Run the scripts on the MAG database after you have installed the OTK. See Post-Installation Tasks.

OTK 4.2 OTK 4.3
No Patch Required Run the script that corresponds to your OTK database type.

 Oracle: #unique_66

 MySQL: #unique_67

 11

 CA API Management OAuth Toolkit 4.3

Product Accessibility Features
CA Technologies is committed to ensuring that all customers, regardless of ability, can successfully use its products and
supporting documentation to accomplish vital business tasks.

Product Enhancements

CA Mobile API Gateway offers accessibility enhancements in the following areas:

• Display
• Sound
• Keyboard
• Mouse

Display

To increase visibility on your computer display, you can adjust the following options:

• Font style, color, and size of itemsDefines font color, size, and other visual combinations.
• Screen resolutionDefines the pixel count to enlarge objects on the screen.
• Cursor width and blink rateDefines the cursor width or blink rate, which makes the cursor easier to find or minimize

its blinking.
• Icon sizeDefines the size of icons. You can make icons larger for visibility or smaller for increased screen space.
• High contrast schemesDefines color combinations. You can select colors that are easier to see.

Sound

Use sound as a visual alternative or to make computer sounds easier to hear or distinguish by adjusting the following
options:

• VolumeSets the computer sound up or down.
• Text-to-SpeechSets the computer's hear command options and text read aloud.
• WarningsDefines visual warnings.
• NoticesDefines the aural or visual cues when accessibility features are turned on or off.
• SchemesAssociates computer sounds with specific system events.
• CaptionsDisplays captions for speech and sounds.

Keyboard

You can make the following keyboard adjustments:

• Repeat RateDefines how quickly a character repeats when a key is struck.
• TonesDefines tones when pressing certain keys.
• Sticky KeysDefines the modifier key, such as Shift, Ctrl, Alt, or the Windows Logo key, for shortcut key combinations.

Sticky keys remain active until another key is pressed.

Mouse

You can use the following options to make your mouse faster and easier to use:

 12

 CA API Management OAuth Toolkit 4.3

• Click SpeedDefines how fast to click the mouse button to make a selection.
• Click LockSets the mouse to highlight or drag without holding down the mouse button.
• Reverse ActionSets the reverse function controlled by the left and right mouse keys.
• Blink RateDefines how fast the cursor blinks or if it blinks at all.
• Pointer OptionsLet you complete the following actions:

– Hide the pointer while typing
– Show the location of the pointer
– Set the speed that the pointer moves on the screen
– Choose the pointer's size and color for increased visibility
– Move the pointer to a default location in a dialog box

 13

 CA API Management OAuth Toolkit 4.3

Architecture
The CA API Gateway OAuth Toolkit is separated in the following logically different components.

Component Notes

OAuth Validation Point (OVP) An endpoint that validates incoming requests for OAuth 2.0. The
endpoint is accessed via a REST API.

DMZ The CA API Gateway holding the OAuth installation enforcing the
OAuth token requirement.

Clientstore All client_ids are stored here. The clientstore is accessible via a
REST API.

Tokenstore All tokens are stored here. The tokenstore is accessible via a
REST API.

Sessionstore An endpoint that provides caching and session services to the
OTK components. This allows OTK components to avoid going to
the database in calls to clientstore and tokenstore APIs.

Resource Server Provides endpoints to access resources. These endpoints require
a valid OAuth token.

The following graphic displays the components within their preferred network zones.

 14

 CA API Management OAuth Toolkit 4.3

Compliance

The CA OAuth Toolkit provides a full featured and standards-compliant OAuth 2.0 solution.

NOTE

OAuth 1.0 is deprecated and no longer supported. Any existing OAuth 1.0 services are removed with an OTK
update. No service history is maintained.

OAuth is an authorization standard that allows one service to integrate with another service on behalf of a user. Instead
of exposing user credentials, an OAuth access token is issued and accepted for user authentication. The OAuth

 15

 CA API Management OAuth Toolkit 4.3

authorization framework permits a user to grant an application (consumer) access to a protected resource without
exposing the user password credentials.

This implementation conforms to the following specifications:

• OAuth 2.0: http://tools.ietf.org/html/rfc6749

This implementation may provide incomplete support for the following draft specifications:

• MAC: https://tools.ietf.org/html/draft-ietf-oauth-v2-http-mac-01#section-3.2
• Base 64: https://tools.ietf.org/html/rfc4648#section-5

CA API Gateway and CA Mobile API Gateway have been granted certifications for the following OpenID Provider
conformance profiles:

• OP Basic
• OP Config
• OP Implicit
• OP Hybrid

These certifications have been registered at OIXnet:

 http://oixnet.org/openid-certifications/
http://www.oixnet.org/openid-certifications/ca2/

NOTE

Specifications can change without notice, possibly causing the OAuth Toolkit to produce incorrect results.

 16

http://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/draft-ietf-oauth-v2-http-mac-01#section-3.2
https://tools.ietf.org/html/rfc4648#section-5
https://urldefense.proofpoint.com/v2/url?u=http-3A__oixnet.org_openid-2Dcertifications_&d=DwMFAg&c=_hRq4mqlUmqpqlyQ5hkoDXIVh6I6pxfkkNxQuL0p-Z0&r=HPWAlFkap50lm3Yp__FTZ61M64cyfLxT-V4KFpf4Pa4&m=Zlcw_7c_hTPm2TvzW4AUBl7mExPg3osGKrpFulI2eMs&s=H4KDuqnsCzviilqdj9VfKkFCpWIa2KOpnyrt5uQ5wZ0&e=
https://urldefense.proofpoint.com/v2/url?u=http-3A__www.oixnet.org_openid-2Dcertifications_ca2_&d=DwQFAg&c=_hRq4mqlUmqpqlyQ5hkoDXIVh6I6pxfkkNxQuL0p-Z0&r=HPWAlFkap50lm3Yp__FTZ61M64cyfLxT-V4KFpf4Pa4&m=Zlcw_7c_hTPm2TvzW4AUBl7mExPg3osGKrpFulI2eMs&s=9TnghxLd7uFS1PhF5-eV8XId2w4xwzENZfvaFRVIlFI&e=

 CA API Management OAuth Toolkit 4.3

Installation Workflow
Figure 1:

To create the OAuth Tool Kit database and install OTK policy components, follow the OTK installation workflow. The
workflow provides instructions for performing both new installations and upgrades.

Perform the following tasks to install and configure the OAuth Toolkit:

• Create or Upgrade the OTK Database
• Create Database Connections
• Install the OAuth Solution Kit
• Post-Installation Tasks
• Configure Authentication
• Verify the Installation
• Troubleshooting

Create or Upgrade the OTK Database
This topic provides links to the create or upgrade procedure for OTK databases, plus model scenarios. The model
scenarios present a simplified overview of suggested OTK deployments. Many alternative scenarios are possible.

Before creating or upgrading the OTK database, be aware of the differences between production an development
environments, and familiarize yourself with the different types of deployment scenarios (Internal, External, split database,
etc.).

How to Create or Upgrade Specific Databases

NOTE

Whether you are creating or upgrading, backup any existing database version before proceeding.

Click any of the following links to access database-specific procedures:

Scripts required for database creation or upgrade are available on Download OTK Installation Files.

See the release notes for compatibility of supported versions.

 17

 CA API Management OAuth Toolkit 4.3

Production vs Development Environments

Be aware that the scenarios and images presented on this page are simplified They do not show required elements for
production environments such as firewalls between the Internal and External zones.

WARNING

In a production environment, do not install the OTK database locally on the Gateway. If the OTK database is
installed locally, performance is negatively impacted.

Standard Database Scenarios

Installation of individual OTK solution kit components for the scenarios is described in Install the OAuth Solution Kit

Single Gateway, Single Database

This is the default configuration. In a single CA API Gateway scenario, the OTK database is accessed by the Internal
Gateway. All OTK components are installed in the same Internal location. By default, OTK policies use a JDBC connection
to the database.

Dual Gateway (DMZ - Internal), Single Database

In a dual gateway scenario, there are two instances of the CA API Gateway: the DMZ, and the Internal. OTK components
are split across the DMZ and the Internal installations. The OTK database is accessed by the Internal Gateway.

In this scenario, the JDBC connection is between the Internal Gateway and the OTK database.

Modifications Required
DMZ Customize OTK policies for OVP configuration, and Storage

configuration to point to the Internal Gateway.
Import the SSL Certificate from the Internal Gateway

 18

 CA API Management OAuth Toolkit 4.3

Internal Customize OTK policies for the authorization server and SAML
token authentication to point to the DMZ Gateway.
Import the SSL Certificate from the DMZ Gateway.

Alternate Database Scenarios

The following diagrams offer alternate database scenarios possibilities. Additional configuration not fully described on this
documentation site may be required.

Contact support and the CA Communities site for information.

Split Gateway, Database Failover

In this database failover scenario, both databases containing the same data are accessed by the Internal Gateway. You
can only have one database connection for each Gateway instance.

Split Gateway, Gateway Cluster, Database Failover

Similar to the previous scenario, this failover scenario includes a Gateway cluster configuration.

 19

 CA API Management OAuth Toolkit 4.3

Modifications Required
ssg.cluster.dmz Customize OTK policies for OVP configuration, and Storage

configuration to point to the Internal Gateway.
Import the SSL Certificate from the Internal Gateway

ssg.cluster.internal Customize OTK policies for the authorization server and SAML
token authentication to point to the DMZ Gateway.
Import the SSL Certificate from the DMZ Gateway.

JDBC Connection with failover on ssg.cluster.internal.

JDBC URL: jdbc:mysql://ssg1.internal,ssg2.internal:3306/<database-name>?
failOverReadOnly=false&autoReconnect=true&connectTimeout=1

Dedicated Databases

Multiple OTK databases can be dedicated to distinct transactions for load balancing.

For example, you can dedicate one database OTK for client configurations, one OTK for token management, and
another OTK for session handling. To support such a configuration, each OTK instance has its own JDBC or Cassandra
connection to the OTK database.

 20

 CA API Management OAuth Toolkit 4.3

Modifications Required
ssg1.internal JDBC or Cassandra connection to the OTK database
ssg2.internal JDBC or Cassandra connection to the OTK database
ssg3.internal JDBC or Cassandra connection to the OTK database

Split Gateway, Dedicated Databases

Similarly, the dedicated databases can exist in a split gateway scenario.

 21

 CA API Management OAuth Toolkit 4.3

MySQL Database
MySQL 5.5.x and 5.7.x Enterprise edition are supported.

Before You Begin

Before creating or upgrading the MySQL database, perform the following tasks:

• Ensure that MySQL is installed on a database host machine.
• Prepare the OTK .sql scripts you require on your local machine.

The .sql script files referenced by these instructions are available for download from this site.
See Download OTK Installation Files.

Create the OTK Database

To create the OTK database:

1. Use the mysql program to connect to the server as the MySQL root user.

 22

 CA API Management OAuth Toolkit 4.3

The following script example creates a database called otk_db.
Use the syntax that corresponds to your version of MySQL.
MySQL 5.5
root@machine_name> mysql

mysql> CREATE DATABASE otk_db;

mysql> GRANT SELECT,UPDATE,DELETE,INSERT ON otk_db.* TO '<db_user>'@'localhost' identified by

 '<db_user_password>';

mysql> flush privileges;

mysql> exit;

MySQL 5.7
root@machine_name> mysql

mysql> CREATE DATABASE otk_db;

mysql> ALTER USER '<db_user>'@'localhost' identified by '<db_user_password';

mysql> GRANT SELECT,UPDATE,DELETE,INSERT ON otk_db.* TO '<db_user>'@'localhost';

mysql> flush privileges;

mysql> exit;

2. Now run the script to create the schema.
root@machine_name> mysql -u root otk_db < otk_db_schema.sql

Running otk_db_schema.sql creates the schema files and installs test data. If you need to re-install the otk test data, use
the file otk_db_testdata.sql

You have created the OTK database.

Upgrade an OTK Database

Perform the following tasks to upgrade an existing MySQL OTK database:

NOTE

The following code examples reference a database named otk_db.

Back Up Your Database

As a precaution, back up your OTK database before running the upgrade scripts.

Example:

[root@ssg]# cd /home/ssgconfig

[root@ssg]# mkdir dbbackup

[root@ssg]# cd dbbackup

[root@ssg]# mysqldump otk_db > otk_backup.sql

Delete Existing OAuth Tokens

Optional. Reduce the upgrade script execution time by deleting any existing OAuth tokens. Note that deleting OAuth
tokens causes client application users to re-authenticate.

mysql> use otk_db;

mysql> DELETE FROM oauth_token;

Determine your Current OTK Database Version

To determine the version of your existing OTK database:

1. Connect to your database.

 23

 CA API Management OAuth Toolkit 4.3

2. As the root MySQL user, run the following command from the mysql shell:
mysql> use otk_db;

mysql> select * from otk_version;

Run the Upgrade Scripts

Start with the script corresponding to your current OTK version, then work up the list (see Download OTK Installation
Files), executing all scripts until you reach the latest version.

As the database user, run the upgrade scripts from the mysql command line.

For example:

mysql> use otk_db;

mysql> source <location>/upgrade_otk4.0.00-otk4.1.00.sql

Oracle Database

Before You Begin

Before creating or upgrading the Oracle database, perform the following tasks:

• Ensure that Oracle 12c or 11g is installed on a database host machine
• Prepare the OTK .sql scripts you require on your local machine.

The .sql script files referenced by these instructions are available for download from this site.
See Download OTK Installation Files.

Create an OTK Database

To create an OTK database on Oracle:

1. Connect to the Oracle server and start SQL Plus.
For example:
cd /u01/app/oracle/product/11.2.0/xe/bin/

source oracle_env.sh

sqlplus

Username: SYSTEM

Password: mypassword

2. From the SQL prompt, create a database user.
SQL> create user <db_user> identified by <db_user_password>;

SQL> grant connect, resource to <db_user>;

 --- Note: CONNECT role enables user to connect to the database

 --- Note: RESOURCE role enables user to create certain types of schema objects in that user's own

 schema (ie. it grants the create table, but not create view)

SQL> exit

3. Run the following command. In this example the sql script is stored in the /temp directory.
sqlplus db_user/db_user_password @/temp/otk_db_schema_oracle.sql

Running otk_db_schema_oracle.sql creates the schema files and installs test data.
If you need to re-install the otk test data, use the file otk_db_testdata_oracle.sql

4. Save.
You have created the OTK database.

 24

 CA API Management OAuth Toolkit 4.3

Upgrade an OTK Database

To upgrade an OTK database on Oracle, connect to the Oracle server and start SQL Plus.

Perform the following tasks to upgrade an existing Oracle OTK database:

Back Up Your Database

As a precaution, back up your OTK database before running the upgrade scripts. To create a full backup of an Oracle
database, contact your database administrator for support.

Delete Existing OAuth Tokens

Optional. Reduce the upgrade script execution time by deleting any existing OAuth tokens. Note that deleting OAuth
tokens causes client application users to re-authenticate.

sql> delete from oauth_token;

sql> commit;

Determine Your Current OTK Database Version

To determine the version of your existing OTK database:

1. Connect to your database.
2. As the database user, run the following command from SQLPlus:

sql> select * from otk_version;

Run the Upgrade Scripts

As the database user, run the upgrade scripts from the SQLPlus command line. Download the SQL scripts that you
require based on your existing OTK version. SQL scripts are available on the Download OTK Installation Files page.

For example:

sql> start <location>/upgrade_otk4.2.00-otk4.3.00_oracle.sql

Apache Cassandra Database
Apache Cassandra™ is an open source non-relational NoSQL database.

 The following tasks are for a Cassandra database running on Linux:

• Before you Begin
• Create an OTK Database
• Upgrade a Cassandra OTK Database

Before You Begin

Before creating the Cassandra database, perform the following tasks:

• Ensure that a running Cassandra instance exists.
• Download the script files from the Download OTK Installation Files page. The scripts must be accessible by the root

user.

 25

 CA API Management OAuth Toolkit 4.3

Create an OTK Database

To create an OTK database on Cassandra:

1. Download the schema and testdata cql files from the Download OTK Installation Files page. Store the files locally.
2. Log in as the root user to the database node:

$ ssh root@yourCassandraDatabase

3. Launch the cqlsh shell and create the otk_db keyspace from the prompt:
$ cqlsh
cqlsh> CREATE KEYSPACE otk_db WITH replication = {'class' : 'SimpleStrategy',
 'replication_factor' : 1};

4. From the UNIX command line, run the scripts to create the schema and populate the tables with test data:
$ cqlsh -k otk_db -f otk_db_schema_cassandra.cql
$ cqlsh -k otk_db -f otk_db_testdata_cassandra.cql

External Files

See the Apache Cassandra documentation for how to run external files.

For example, you can specify an IP Address and port number to start cqlsh on a different node.
Provide user credentials if authentication is required.

$ cqlsh 123.123.123.123 9042 -u [username] -p [password] -f otk_db_schema_cassandra.cql

Replication Factor

The OTK supports a single-node Cassandra cluster with a replication factor of one.

Upgrade a Cassandra OTK Database

Find the scripts to upgrade a Cassandra OTK database on the Download OTK Installation Files page.

NOTE

The latest upgrade script has been tested and can copy up to 5 million rows from the old database to the new. If
you experience problems running this script, increase PAGETIMEOUT and decrease PAGESIZE values.

Update the Schema

Run multiple scripts sequentially to upgrade your current OTK version to the most recent version.

To upgrade an OTK database on Cassandra:

1. Open an ssh window to a Cassandra node:
$ssh root@node.cassandra.myDomain.com

2. From the UNIX command line, run the scripts to update the OTK schema. The following example upgrades a
Cassandra database from version 4.2.00 to 4.3.00:
$ cqlsh -k otk_db -f otk_db_schema_update_4.2.00-4.3.00.cql

Create Database Connections
Create and configure the connection to the database. There are two types of data source connections you can create:
JDBC connections (for MySQL or Oracle), or Cassandra database connections.

 26

 CA API Management OAuth Toolkit 4.3

NOTE

We recommend using the default connection names provided: OAuth for JDBC
connections, OAuth_Cassandra for Cassandra connections.

Integration with CA API Portal requires database connections with the default connection names.

Create JDBC Connections

JDBC connections are used with MySQL and Oracle databases.

To create a JDBC connection:
1. From the Policy Manager, navigate to Tasks,

Data Sources, Manage JDBC Connections.
2. Click Add or select an existing connection and click Clone.
3. Configure connection properties based on database type.

Refer to the sections below.
4. Click Test to verify the JDBC connection works.

MySQL Database Connection Properties

Create a JDBC connection by configuring properties shown in the following table.

Property Default Value Notes
Connection Name OAuth Type a name to identify the JDBC

Connection. Maximum 128 characters.
Driver Class com.l7tech.jdbc.mysql.MySQLDriver Select from the driver classes or provide

your own. A support description appears
after you select.

JDBC URL jdbc:mysql://localhost:3306/otk_db Provide your own URL value.
User Name otk_user
Password password Replace with a more secure password.

Oracle Database Connection Properties

If you are using an Oracle database, create a connection as shown in the following tables.

Property Default Value Notes
Connection Name OAuth The name of the JDBC Connection that will

be created. Maximum 128 characters.
Driver Class com.l7tech.jdbc.oracle.OracleDriver Select from the driver classes or provide

your own. A support description appears
after you select.

JDBC URL jdbc:l7tech:oracle:/
/yourOracleDBServer:1521

User Name db_user

 27

 CA API Management OAuth Toolkit 4.3

Password db_user_password

Additional Properties

Property Value
Database <yourDatabaseName>

Support for Multiple Local Databases

Multiple local databases for distinct transactions can be supported. For example, you can dedicate one database for client
configurations, one for token management, and another for session handling. To support such a configuration, create
one JDBC connection per database and modify the policies to adjust the JDBC assertions to use a non-default JDBC
connection. Policies containing JDBC assertions are found in the subfolders of Policy Fragments/persistence/.

Create Cassandra Connections

Apache Cassandra™ does not use JDBC connections.

Create the Cassandra database connection using the following procedure.

To create the Cassandra connection:
1. Navigate to Tasks > Data Sources > Manage Cassandra

Connections.
2. Click Add.
3. Configure connection properties as shown in the following

table.

Property Value Notes
Connection Name OAuth_Cassandra Type a name used to identify the

connection.
Contact Points myCassandra.myCorp.com Cassandra nodes separated by commas. IP

address or DNS
Port 9042 Default value.
Password dbpassword
Keyspace otk_db Default value. Existing keyspaces can

be viewed in cqlsh using "DESCRIBE
keyspaces".

Username root

Install the OAuth Solution Kit
The OAuth Solution Kit contains the policies, endpoints, and assertions that create the OAuth Toolkit (OTK). From the
Policy Manager, install the single OAuth Solution Kit .sskar file. This file contains multiple solution kits that provide specific
OAuth functionality.

This page contains the following topics related to installation:

 28

 CA API Management OAuth Toolkit 4.3

Before you Begin

Perform the following pre-installation tasks:

• Download the OAuth Solution Kit .sskar file
• Create or Upgrade the OTK Database
• Configure JDBC or Cassandra database connections. See Create Database Connections.

Creating the database connection before installing the solution kits allows you to select the existing connection during
the Resolve Entity Conflicts stage.

Upgrade or Install?

Action Notes
Upgrade To upgrade an OTK release to the latest version, follow

the upgrade instructions. If upgrading from OTK 4.x, read-only
policies are replaced; custom configurations and services are
retained. If upgrading from OTK 3.x, install the 4.x version and
transfer custom configuration to the #policies.

Install If you prefer to remove your older installation completely
and lose all customizations, perform an Uninstall the
OTK, manually delete any remaining folders, then install the new
OTK version.

Install and keep previous version If you prefer to retain a previous version as a reference, install the
new OTK version with an instance modifier.
We recommend you do not install the OTK with an instance
modifier if you intend to integrate with API Portal.

Launch the OAuth Solution Kit Installer

To launch the OAuth solution kit installer:

1. In Policy Manager, go to Tasks, Extensions, and Add-Ons, Manage Solution Kits.
2. If you have an existing OTK version you want to remove, select it and select Uninstall. Follow the

uninstall instructions.
Alternatively, you can keep an older OTK version by installing the new version with an instance modifier.

3. Click Install.
4. Identify the Solution Kit File to use.

Click File and locate the signed skar file (.sskar) for the OAuth Solution Kit.
For example: OAuthSolutionKit-4.3.00-1234.sskar.
The path to the solution kit file appears, select Next.

The OAuth Solution kit includes multiple solution kits.

Select and Install Solution Kits

The solution kit includes DMZ, Internal, Shared, and Persistence Layer kits.

Choose to install solution kits on the same server, or to split the OTK installation across the DMZ (external) and Internal
servers.

NOTE

The recommended multi-server OTK installation is as follows:

 29

 CA API Management OAuth Toolkit 4.3

• Install the DMZ solution kits on the exposed server
• Install the Internal solution kits on the protected server
• Install the Shared solution kits on both servers
• Install the Persistence Layer solution kit that matches your database type on the server that connects to the

database. This is usually the Internal protected server.

For multi-server installation instructions, see Dual Gateway Scenario.

To select and install specific solution kits on a single server:

1. Select one or more of the available solution kits listed.
Suggested selection is as follows:
– DMZ, OAuth 2.0, and OpenID Connect endpoints
– Internal, Server Tools
– OTK Assertions
– Persistence Layer: database type (where database type is the solution kit that matches your currently installed OTK

database type)
– Shared OAuth Resources

2. Assign an optional instance modifier. See Add an Instance Modifier.
3. Click Next.

Recommended Base Selection for a Single Server Installation

Recommended Selection for SaaS CA API Developer Portal Integration

Selection includes the Base selection plus:

• Internal, Portal
• One Portal Persistence Layer selection (depends on database type)
• Shared Portal Resources

 30

 CA API Management OAuth Toolkit 4.3

More Installation Options

Choose any of the following installation options:

• Support Alternative Database Scenarios
Alternate database scenarios can require selection of a Persistence Layer solution kit plus configuration of either a
JDBC or Cassandra connection.

• Add an Instance Modifier to distinguish this installation from a previous installation of the same version. See Add an
Instance Modifier.

Add an Instance Modifier

Do you intend to keep the previous installation as a reference?

If so, select the solution kits and select Set Instance Modifier. Type a string value, then select OK. The value is added to
service resolution URIs, folders, policy names, and other components.

Rules about instance modifiers:

• The instance modifier value must be different for each installation.
• Use the same instance modifier across all the solution kits of a single version.
• If you install OTK with an instance modifier, use the same instance modifier when installing additional products (such

as CA Mobile API Gateway).

WARNING

If you intend to integrate with the CA API Developer Portal, do not add an Instance Modifier to your OTK
installation. The CA API Developer Portal currently does not support OTK installations with Instance Modifiers.

Resolve Entity Conflicts

The installer tests each solution kit for potential conflicts in the following areas:

 31

http://docops.ca.com#iMod
http://docops.ca.com#iMod

 CA API Management OAuth Toolkit 4.3

• Service routing conflicts
• Policy conflicts
• Certificate conflicts
• Encapsulated Assertion conflicts
• Missing JDBC connections
• Missing assertions

If an error is detected in any of the solution kits:

• The solution kit name is displayed in red.
• The Resolved column for the specific solution kit entity is highlighted and displays "No".
• The Finish button is unavailable.

To resolve entity conflicts:

1. Click a solution kit tab highlighted red.
The entities are listed.

2. Select the entity containing the conflict and select Resolve. A dialog offers you actions to resolve the conflict.
The Resolved column indicates a resolved conflict.

3. When all conflicts are resolved, select Finish to start the installation.
Finish can only be clicked after all conflicts have been resolved.

Resolve the Database Connection Entity Conflict

Selection of the following solution kits requires resolution of the database connection.

• Persistence Layer: MySQL or Oracle
• Persistence Layer: Cassandra
• Shared Portal Resources

There is an entity conflict to resolve until the OTK database connection is identified. There is an additional database
connection entity conflict to resolve if you have selected to integrate with the CA API Management SaaS Portal.

To resolve the database connection entity conflict:

1. Select the entity that requires conflict resolution.
2. Click Resolve.

The Resolve Entity Conflict dialog appears.
3. In the Action section, select an existing connection. Otherwise, select Manage then Add to create a new connection.
4. With the connection selected on the Resolve Entity Conflict dialog, select OK.

The entity conflict is resolved. The Resolved column is updated.

 32

 CA API Management OAuth Toolkit 4.3

Dual Gateway Scenario

The dual Gateway scenario configuration can be used to support
the CA Mobile API Gateway (MAG) installed on two servers.

Install Solution Kit Components

The OTK solution kit includes a solution kit components that enable database connection, integration with API Portal, and
OAuth functionality.

To make configuration and integration easier:

• Use the default connection names
• Do not assign an instance modifier

Install DMZ Gateway Solution Kit Components

In the recommended dual Gateway scenario, the DMZ Gateway does not connect to the database.

To install the OTK components for the DMZ Gateway:

1. Open the Policy Manager and connect to the DMZ server.
2. Go to Tasks, Extensions and Add-Ons, Manage Solution Kits.
3. Click Install and locate the OAuth solution kit sskar file. With the solution kit chosen, click Next.
4. Select the following solution kit components:

– DMZ, OAuth 2.0 and OpenID Connect endpoints
– Shared OAuth Resources

5. Click Next.
6. Resolve any conflicts. If conflicts exist, the solution kit name appears in red and the Finish button is not available.
7. Click Finish.

Recommended Solution Kit Component Selection for the DMZ Gateway:

 33

 CA API Management OAuth Toolkit 4.3

More Installation Options

Choose any of the following installation options:

• Integrate with the SaaS CA API Developer Portal. See Install OTK with API Portal Integration.
To integrate with the SaaS CA API Developer Portal, select the Shared Portal Resources solution kit component.

• Support Alternative Database Scenarios
Alternate database scenarios can require selection of a Persistence Layer solution kit plus configuration of either a
JDBC or Cassandra connection.

• Add an Instance Modifier to distinguish this installation from a previous installation of the same version.
Do not select an instance modifier if you are integrating with the CA API Developer Portal.
See Add an Instance Modifier.

Install Internal Gateway Solution Kit Components

In the recommended dual Gateway scenario, the Internal Gateway connects to the database and provides Storage APIs
for OTK on DMZ to access the backend storage.

To install the OTK components for the internal gateway:

1. Open the Policy Manager and connect to the Internal server.
2. Go to Tasks, Extensions and Add-Ons, Manage Solution Kits.
3. Click Install and locate the OAuth solution kit sskar file. Click Next.
4. Select the following components for your installation:

– Internal, Endpoint to access the client persistence layer
– Internal, Endpoint to access the session persistence layer
– Internal, Endpoint to access the token persistence layer
– Internal, OAuth Validation Point
– Internal, Server Tools
– OTK Assertions
– Persistence Layer: database type
– Shared Oauth Resources

5. Resolve any conflicts.
Configuration of either a JDBC or Cassandra connection is required.
If conflicts exist, the solution kit name appears in red and the Finish button is not available.

6. Click Finish.

 34

 CA API Management OAuth Toolkit 4.3

Recommended Solution Kit Component Selection for the Internal Gateway

NOTE

Select either Persistence Layer: Cassandra or Persistence Layer: MySQL or Oracle to match the currently
installed database type.

More Installation Options

Choose any of the following installation options:

• Have you already created JDBC or Cassandra database connections? See Create Database Connections. You either
select or create the database connection during the Resolve Entity Conflict stage.

• Integrate with the SaaS CA API Developer PortalTo integrate with the SaaS CA API Developer Portal, select
the Internal, Portal, Shared Portal Resources, and one of the Portal Persistence Layer solution kit components.A
JDBC connection for the Shared Portal Resources solution kit is required. Cassandra is not supported.

• Provide an Instance Modifier to distinguish this installation from a previous installation of the same version. See Add an
Instance Modifier.

Add an Instance Modifier

Not recommended.

The instance modifier, previously known as the prefix, allows you to install multiple instances of the OTK, each with a
unique identifier. The value is added to service resolution URIs, folders, policy names, and other components.

But do you need it?

Before the customization folder was introduced, upgrading the OTK was performed by installing a new instance with an
instance modifier, then transferring custom configuration manually from the old to the new version. This method is now
obsolete. Any custom configuration is retained in the customization folder when upgrading. As a result, the practical
application of the instance modifier is limited. It causes additional configuration for integrating API Portal.

However, if you must add an instance modifier, select the solution kits and click Set Instance Modifier. Type a string
value, then click OK.

Rules about instance modifiers:

 35

 CA API Management OAuth Toolkit 4.3

• The instance modifier value must be different for each installation.
• Use the same instance modifier across all the solution kits of a single version.
• If you install OTK with an instance modifier, use the same instance modifier when installing additional products (such

as CA Mobile API Gateway).
• Do not use an instance modifier if you want to integrate with API Portal.

Resolve Entity Conflicts

The installer tests each solution kit for potential conflicts in the following areas:

• Service routing conflicts
• Policy conflicts
• Certificate conflicts
• Encapsulated Assertion conflicts
• Missing database connections
• Missing assertions

If an error is detected in any of the solution kits:

• The solution kit name is displayed in red.
• The Resolved column for the specific solution kit entity is highlighted and displays "No".
• The Finish button is grayed out and not available.

To resolve entity conflicts:

1. Click a solution kit tab highlighted red.
The entities are listed.

2. Select the entity containing the conflict and click Resolve. A dialog box offers you actions to resolve the conflict.
The Resolved column indicates a resolved conflict.

3. When all conflicts are resolved, click Finish to start the installation.
Finish can only be clicked after all conflicts have been resolved.

Resolve the Database Connection Entity Conflict

Selection of any the following solution kits requires resolution of the database connection.

• Persistence Layer: MySQL or Oracle
• Persistence Layer: Cassandra
• Portal Persistence Layer: MySQL or Oracle
• Portal Persistence Layer: Cassandra

There will always be an entity conflict to resolve until the OTK database connection is identified. There is an additional
database connection entity conflict to resolve if you have selected to integrate with the CA API Management SaaS Portal.

 36

 CA API Management OAuth Toolkit 4.3

To resolve the database connection entity conflict:

1. Select the entity that requires conflict resolution.
2. Click Resolve.

The Resolve Entity Conflict dialog appears.
3. In the Action section select an existing connection. Otherwise, click Manage then Add to create a new connection.
4. With the connection selected on the Resolve Entity Conflict dialog, click OK.

The entity conflict is resolved. The Resolved column is updated.

Post-Installation Tasks for the Dual Gateway Scenario

The following tasks are required after the solution kits are installed:

Restart the Gateway

After installing the OAuth Solution Kit, restart the CA API Gateway. Failure to restart the Gateway after installation causes
errors.

To stop and restart the Gateway using the menu:

1. Access the Gateway main menu.
2. Choose option 2 (Display Gateway configuration menu).
3. Choose option 7 (Manage Gateway status). The current status of the Gateway is displayed.

Press [Enter] to continue.
4. Select the option to restart the Gateway. It may take a moment for the Gateway to restart completely.

To stop and restart the Gateway using the command line:

1. Open a privileged shell.
2. Run the following command:

service ssg restart

Software Gateway

To stop the Software Gateway:

1. Log in as the gateway or root user.
2. Run the following command:

/opt/SecureSpan/Gateway/runtime/bin/gateway.sh stop

To start the Software Gateway:

1. Log in as the gateway or root user.
2. Run the following command:

./runtime/bin/gateway.sh run

 37

 CA API Management OAuth Toolkit 4.3

Import the Public Certificate

The Gateway must trust its own SSL certificate before you can use the test clients. Import the Gateway public certificate
into the certificate store of the Gateway.

To import the public certificate:

1. In the Policy Manager, choose Tasks, Certificates, Keys, and Secrets, Manage Certificates. The Manage
Certificate dialog appears.

2. Click Add. The Add Certificate Wizard appears.
3. Select Retrieve via SSL Connection (HTTPS or LDAPS URL) and enter https://<hostname>:8443.
4. Click Next.

The certificate details are displayed.
5. Click Next.

On the Specify Certificate Options page, select the following:
– Outbound SSL Connections
– Signing Certificates for Outbound SSL Connections
– Signing Client Certificates
– Signing SAML Tokens

6. Click Next.
Select Certificate is a Trust Anchor.

7. Click Finish and Close.

More Tasks for the Dual Gateway Scenario

See Post-Installation Tasks for the Dual Gateway Scenario for detailed procedures to these required tasks:

• Modify Policies on the DMZ Gateway
• Modify Policies on the Internal Gateway
• Configure the id_token Issuer Identifier (Dual Gateway)
• Import SSL Certificates (Both Gateways)
• Configure the FIP Authentication for Dual Gateway

Install OTK with API Portal Integration
API Portal allows owners to control how APIs are published, enables consumers to discover what services are available,
and helps operations teams monitor API performance.

Enable API Portal integration with the OTK by installing and configuring API Portal components from the OTK solution kit.

This page contains the following sections:

• Plan of Action
• Select OTK and Portal Solution Kit Components
• Your OTK has an Instance Modifier (Prefix)?
• Post Installation Tasks
• Enroll the Gateway with API Portal

 38

 CA API Management OAuth Toolkit 4.3

Plan of Action

To Install the OTK with API Portal support:

1. In the Policy Manager, from the OTK solution kit, select both OTK and Portal Solution Kit Components.
The selection depends on whether you have a single or dual Gateway scenario.

2. Do not assign an instance modifier.
If your OTK already has an instance modifier, you must install another instance of OTK without an instance modifier to
support API Portal.

3. Use the default database connection names to avoid additional configuration:
– "OAuth" for JDBC connections
– "OAuth_Cassandra" for Cassandra connections.

4. Perform all required post-installation configuration tasks including restarting the Gateway.
5. Enroll with Portal.

The final integration step "Enroll with Portal" assumes that the Portal tenant has been created.

NOTE

API Portal requires an OTK instance without an instance modifier (prefix). For new installations, we
recommend you install the OTK and the API Portal solution kits without an instance modifier.

If you already have an OTK installed with an instance modifier, you must install a separate instance of the OTK
without an instance modifier to work with API Portal. Additional post-installation configuration is required. Future
upgrades require upgrading both OTK instances to the new version. See So your OTK has an Instance Modifier
(Prefix)?

Select OTK and Portal Solution Kit Components

The OTK sskar file contains all the solution kit components required for OTK and API Portal.

Select the recommended solution kit components corresponding to your single or dual gateway scenario.

For both scenarios, use the default database connection names:

• "OAuth" for JDBC connections
• "OAuth_Cassandra" for Cassandra connections.

Single Gateway Scenario

Selection includes the Base OTK selection plus:

• Internal, Portal
• One Portal Persistence Layer selection (depends on database type)
• Shared Portal Resources

Avoid using instance modifiers.

Recommended solution kit component selection for a single Gateway:

 39

 CA API Management OAuth Toolkit 4.3

Dual Gateway Scenario

In the dual gateway scenario example, only the internal gateway accesses the database. Avoid using instance modifiers.

Recommended solution kit component selection for the DMZ Gateway:

Recommended solution kit component selection for the Internal Gateway:

 40

 CA API Management OAuth Toolkit 4.3

For Dual Gateway scenarios, regardless of API Portal integration, there are additional post-installation tasks. See Post-
Installation Tasks for the Dual Gateway Scenario.

So your OTK has an Instance Modifier (Prefix)?

These tasks only apply if your current OTK has an instance modifier. An OTK with an instance modifier is also called as a
"prefixed OTK".

For the API Portal to work with a prefixed OTK you must install a separate instance of OTK (without a prefix) then
configure your two instances of OTK to work with API Portal.

The tasks include:

• Install a Non-Prefixed OTK Instance
• Remove Duplicate OTK Database Maintenance Tasks
• Create New Prefixed Standard Policy Templates

NOTE

Be aware that the following requirements must be met:

• Both OTK instances must be the same version.
• Both OTK instances must point to the same database

Install a Non-Prefixed OTK Instance

On the Gateway with the prefixed OTK installed, install an non-prefixed instance of the OTK.
For example, the following screenshot shows two OTK instances: one without an instance modifier, and one with the
instance modifier "scrum".

 41

 CA API Management OAuth Toolkit 4.3

Remove Duplicate OTK Database Maintenance Tasks

After installing the OTK instances, there are two sets of OTK Database Maintenance tasks: one prefixed, one without a
prefix. Because both OTK instances must point to the same database, you only need the non-prefixed set.

1. Go to Tasks > Global Settings > Manage Scheduled Tasks.
2. Select each prefixed OTK Database Maintenance scheduled task, click Edit, and click Remove.

 42

 CA API Management OAuth Toolkit 4.3

Create New Prefixed Standard Policy Templates

To create the standard policy templates for the prefixed OTK:

1. Navigate to Tasks > Extensions and Add-Ons > Manage Encapsulated Assertions.
2. Search for "Standard".

A list of Standard Policy Templates encapsulated assertions appears.

3. Select the template you intend to use for authentication and click Export. You can select multiple encapsulated

assertions.
4. Immediately Import the Policy Template you just exported. When informed of duplication select Create New.

5. Add the prefix to the duplicate references.

Use the format: prefix-Standard Policy Template:

Click OK.
A new prefixed Standard Policy Fragment is created.

6. In the Policy Manager, locate the newly created prefixed Policy Fragment. Search for the policy fragment by name.
The new policy fragment appears in the Policy Fragments folder under the prefixed OTK.

7. Did you create a prefixed Standard Policy Template Fragment for OAuth 2.0? If so, open it.
Replace the non-prefixed assertions shown in the following table with corresponding prefixed assertions.
To make the edits, drag the prefixed assertion from the Assertions panel. Set initial properties as shown in the Notes
column, click OK, then delete the old assertion.

 43

 CA API Management OAuth Toolkit 4.3

Where Original New Notes

Line 38

Set Cache validation
result to 0.

Line 47

Set the following values:
API Key:
${lookupApiKey}

Service ID:
${portal.managed.service.apiID}

8. DId you create a prefixed Standard Policy Template Fragment for API Key? If so, open it.
Replace the non-prefixed assertion shown in the table with corresponding prefixed assertion.
To make the edit, drag the prefixed assertion from the Assertions panel. Set initial properties as shown in the Notes
column, click OK, then delete the old assertion.

Where Original New Notes

Line 55

Set the following values:
API Key:
${lookupApiKey}

Service ID:
${portal.managed.service.apiID}

9. Save the edited prefixed Standard Policy Template Fragments.
10. Move (drag and drop) the prefixed Standard Policy Template Fragments under the API Portal Integration folder.

11. Either remove or disable the duplicated non-prefixed Standard Policy Template Fragment.

To disable the non-prefixed fragment:
Open the non-prefixed fragment, right-click the "Set as Portal Publishable Fragment" assertion on line 2,
select Disable Assertion, then Save.

Post Installation Tasks

After installing the solution kits, perform the required configuration tasks through the Policy Manager.

 44

 CA API Management OAuth Toolkit 4.3

• Restart the Gateway
• Import the Public Certificate

Dual Gateways have additional required tasks.
See Post-Installation Tasks for the Dual Gateway Scenario.

Conditionally required tasks may also apply to your installation. Optional tasks are not required and depend on your
configuration preferences.

• Set the Database Type (Oracle or Cassandra)
• Configure the id_token Issuer Identifier (Dual Gateway)
• Configure Support for MAG 4.1
• Update Custom 3.x or 4.0.00 Policies
• Create a Dedicated Signing Key for id_token/JWT

Enroll the Gateway with API Portal

An API Portal with a tenant is required before you can enroll. For more detailed instructions, see the "Enroll a CA API
Gateway" section of the CA API Portal guide at docops.ca.com/apiportal.

Product version requirements are:

• CA API Gateway 9.2.00 CR05 or higher
• OAuth Toolkit (OTK) version 3.6 or higher

Before You Begin

Ensure that the following requirements are met:

• The tenant record must be created. See Create the API Portal Tenant.
• The Integration tasks for the OTK installation have been performed.
• Ensure that no global policies are configured on the API Gateway.
• Have the API Portal hostname (for example, apim.mycompany.com) mapped in your DNS server or in the hosts file of

your Gateway
• The time on the API Gateway is synchronized with the API Portal. Typically, both entities point to the same NTP server.

We recommend before enrolling the API Gateway, take a snapshot of the API Portal as a backup.

NOTE

if you are not using the default database connection names (OAuth and OAuth_Client enrollment process fails.

For existing non-default database connection names, clone the db connection and use the default names for the
new connections.

DMZ or Internal?

In a dual gateway scenario, we recommend you enroll the Gateway with the DMZ Gateway.

If you enroll with the Internal Gateway, and want to serve APIs from the DMZ Gateway, perform the following tasks:

• Provide developers with a URL to the DMZ Gateway.
• Create service policies that route to the internal gateway. The authorize and token endpoints go to the DMZ Gateway

and are routed to the Internal Gateway.

 45

https://techdocs.broadcom.com
https://techdocs.broadcom.com
https://techdocs.broadcom.com
https://techdocs.broadcom.com
https://techdocs.broadcom.com
https://techdocs.broadcom.com
https://techdocs.broadcom.com
https://techdocs.broadcom.com
https://techdocs.broadcom.com
http://apim.mycompany.com

 CA API Management OAuth Toolkit 4.3

Enroll the Gateway with API Portal

To enrol the Gateway with the Portal server:

1. In a browser, navigate to the new tenant URL that you defined in enroll.json.
2. Log in to the API Portal as the API Portal administrator using the following default credentials:

– User: admin
– Password: 7layer
Change the default password upon login.

3. Select the Services icon.
4. Select Publish > Proxies.

The API Proxy page displays.
5. Select Add Proxy.
6. Enter a name in the Proxy Name field.
7. Select Automatic, On Demand, or Scripted deployment type. See API Portal documentation for a description of each.
8. Select Create.

The Proxy Enrollment page displays.
9. In Enrollment URL, select Select URL and copy the value.
10. Using the CA API Gateway Policy Manager, connect to your CA API Gateway.
11. After you are logged in, select Tasks > Extensions and Add-Ons > Enroll with Portal.
12. Paste the enrollment URL in the Enroll with SaaS Portal window and select Apply.
13. Log in to your new tenant Portal, for example, mytenant.mycompany.com , and validate that the external tenant

displays.
14. Restart the API Gateway by running

service ssg restart

on the API Gateway server.

Post-Installation Tasks
After installing the solution kits, perform the required configuration tasks through the Policy Manager.

Conditionally required tasks may also apply to your installation. Optional tasks are not required and depend on your
configuration preferences.

NOTE

In the following examples:

• replace <hostname> with the hostname of your server. For example, myGateway.com
• replace <iModifier> with the instance modifier used when you installed the OTK solution kit. Ignore

<iModifier> if your Gateway does not have an instance modifier.

Restart the Gateway

After installing the OAuth Solution Kit, restart the CA API Gateway. Failure to restart the Gateway after installation causes
errors.

 46

http://mytenant.mycompany.com

 CA API Management OAuth Toolkit 4.3

To stop and restart the Gateway using the menu:

1. Access the Gateway main menu.
2. Choose option 2 (Display Gateway configuration menu).
3. Choose option 7 (Manage Gateway status). The current status of the Gateway is displayed.

Press [Enter] to continue.
4. Select the option to restart the Gateway. It may take a moment for the Gateway to restart completely.

To stop and restart the Gateway using the command line:

1. Open a privileged shell.
2. Run the following command:

service ssg restart

Software Gateway

To stop the Software Gateway:

1. Log in as the gateway or root user.
2. Run the following command:

/opt/SecureSpan/Gateway/runtime/bin/gateway.sh stop

To start the Software Gateway:

1. Log in as the gateway or root user.
2. Run the following command:

./runtime/bin/gateway.sh run

Import the Public Certificate

The Gateway must trust its own SSL certificate before you can use the test clients. Import the Gateway public certificate
into the certificate store of the Gateway.

To import the public certificate:

1. In the Policy Manager, choose Tasks, Certificates, Keys, and Secrets, Manage Certificates. The Manage
Certificate dialog appears.

2. Click Add. The Add Certificate Wizard appears.
3. Select Retrieve via SSL Connection (HTTPS or LDAPS URL) and enter https://<hostname>:8443.
4. Click Next.

The certificate details are displayed.
5. Click Next.

On the Specify Certificate Options page, select the following:
– Outbound SSL Connections
– Signing Certificates for Outbound SSL Connections
– Signing Client Certificates
– Signing SAML Tokens

6. Click Next.
Select Certificate is a Trust Anchor.

7. Click Finish and Close.

 47

 CA API Management OAuth Toolkit 4.3

Conditionally Required and Optional Tasks

The following tasks are required or optional depending on your configuration and preferences.

Set the Database Type (Oracle or Cassandra)

This task is only required if you are using an Oracle or Cassandra database. If your database type is MySQL, you do not
need to set the database type.

The database type is identified by the dbsystem context variable. The default setting for dbsystem is "mysql".

To set the database type:

1. In the Policy Manager, open the target policy, OTK Storage Configuration. Locate the policy in OTK/Policy
Fragments/configuration

2. Copy the Set Context Variable assertion for dbsystem.

3. Open the hash policy, #OTK Storage Configuration. Locate the policy in OTK/Customizations
4. Paste the Set Context Variable assertion for dbsystem from the target policy into the hash policy.
5. In #OTK Storage Configuration, double-click the assertion. Indicate the database type by typing one of the following

values:
– oracle
– cassandra

6. Click OK, then Save and Activate the hash policy.

Hash policies contain custom values that override default values in target configuration policies.
For example, the following code in the #OTK Storage Configuration policy sets dbsystem to "cassandra". This overrides
the default "mysql" setting for dbsystem found in the OTK Storage Configuration policy.

Configure the id_token Issuer Identifier (Dual Gateway)

This task is only required in a dual-gateway scenario for the Internal Gateway.

The issuer identifier attribute (iss) for id_token is set to the URL of the Gateway issuing the id_token.

 48

 CA API Management OAuth Toolkit 4.3

By default, the hostname of the Gateway is used to create the iss URL value: https://
${gateway.cluster.hostname}:8443

NOTE

In a dual gateway scenario, the iss for id_token must be the URL of the DMZ Gateway. The Internal Gateway iss
value must be changed to reference the DMZ gateway hostname in the URL.

To configure the id_token issue identifier:

1. Open the OTK id_token Configuration policy. Locate the policy in OTK/Policy Fragments/configuration.
2. Copy the Set Context Variable iss assertion.
3. Open the hash policy, #OTK id_token Configuration. Locate the policy in OTK/Customizations
4. Paste the Set Context Variable iss assertion.
5. Double-click the assertion and configure the value to the URL of the Gateway issuing the id_token. In a dual gateway

scenario, the iss for id_token must be the URL of the DMZ Gateway.
6. Click OK, then Save and Activate the hash policy.

Configure Support for MAG 4.1

This task is required if all the following conditions are met:

• You are running OTK 4.3.x and Mobile API Gateway (MAG) version 4.1.x
• The MAG 4.1 database is either MySQL or Oracle

After installing OTK 4.3 and MAG 4.1, run the MAG compatibility patch against the MAG database (MySQL or Oracle). No
action is required if the MAG database is a Cassandra database.

Download the database specific MAG 4.1 Compatibility Patch script from the Download OTK Installation Files page.

For a MySQL database:

1. Connect to your MAG database.
2. As the database user, run the compatibility script from the mysql command line. In this example the MAG database is

mag_db.
mysql> use mag_db;

mysql> source <location>/mag_4.1_otk_4.3_compatibility_mysql.sql

 For an Oracle database:

1. Connect to your MAG database.
2. As the database user, run the script from the SQLPlus command line.

sql> start <location>/mag_4.1_otk_4.3_compatibility_oracle.sql

Update Custom 3.x or 4.0.00 Policies

This task is required if all the following conditions are met:

• You upgraded to the latest OTK from OTK 3.x or 4.0.00.
• You created custom policies in OTK 3.x or 4.0.00 that contain the Decode Json Web Token assertion.

See Update Custom 3.x or 4.0.00 Policies Containing the Decode Json Web Token.

 49

 CA API Management OAuth Toolkit 4.3

Create a Dedicated Signing Key for id_token/JWT

By default, the id_token/JWT is signed by the default SSL key. You can use a dedicated private key to perform this task.

See Use a Dedicated Private Key for id_token Signing.

Post-Installation Tasks for the Dual Gateway Scenario
The following tasks apply to a dual Gateway scenario only. They are required after the solution kits are installed:

Modify Policies on the DMZ Gateway

By default, OTK policies support a single gateway scenario and are set to localhost:8443. For the dual gateway scenario,
policies on the DMZ must point to the Internal gateway.

Perform the following configuration tasks on the DMZ gateway.

OTK OVP Configuration

To modify the configuration to point to the Internal gateway:

1. On the DMZ gateway, go to OTK/Policy Fragments/configuration
2. Open the OTK OVP Configuration policy.
3. Copy the "Set Context Variable host_oauth_ovp_server" assertion.
4. Open the #OTK OVP Configuration policy located in the Customizations folder.
5. Paste the assertion and replace "localhost" with the hostname of the Internal gateway
6. Save and Activate.

OTK Storage Configuration

To modify the configuration to point to the Internal gateway:

1. On the DMZ gateway, go to OTK/Policy Fragments/configuration
2. Open the OTK Storage Configuration policy located in the Customizations folder.
3. Copy the "Set Context Variable" assertions for the following:

– host_oauth_tokenstore_server
– host_oauth_clientstore_server
– host_oauth_session_server

4. Open the #OTK Storage Configuration policy.
5. Paste the assertions. For each assertion, replace "localhost" with the hostname of the Internal gateway.
6. Save and Activate.

Modify Policies on the Internal Gateway

By default, OTK policies support a single gateway scenario and are set to localhost. In a dual gateway scenario, certain
policies on the Internal Gateway must point to the DMZ gateway. All modification is done inside the #OTK Client Context
Variables policy located in OTK/Customizations/tools.

To modify the authorization server configuration:

1. On the Internal gateway, search for and open the OTK Client Context Variables policy.
2. Copy the "Set Context Variable host_oauth2_auth_server" assertion.
3. Open the #OTK Client Context Variables policy.

 50

 CA API Management OAuth Toolkit 4.3

4. Paste the assertion and replace ${gateway.cluster.hostname} with the hostname and port of the DMZ gateway.
5. Save and Activate.

To support SAML Token authentication:

1. On the Internal gateway, go to OTK/Policy Fragments/configuration
2. Open the #OTK Client Context Variables policy.
3. Copy the existing Set Context Variable for host_oauth2_auth_server assertion. This assertion already has the DMZ

hostname as a value.
4. Paste the assertion into the same policy.
5. Modify the Set Context Variable by changing the name to audience_recipient_restriction.
6. Remove the port number.
7. Click OK.
8. Save and Activate.

Configure the id_token Issuer Identifier (Dual Gateway)

Update the id_token issuer to match your DMZ gateway URL. See Configure the id_token Issuer Identifier.

NOTE
 If you are using a load balancer to expose a port to the external environment, the id_token issuer must use the
same port.

Import SSL Certificates (Both Gateways)

Each Gateway must import the SSL certificate of the other.

Perform the following tasks:

• Export the SSL Certificate from the DMZ Gateway, and import it into the Internal Gateway
• Export the SSL Certificate from the Internal Gateway, and import it into the DMZ Gateway

To export the SSL certificate:

1. Go to Tasks > Certificates, Keys and Secrets > Manage Certificates.
2. Select the certificate with the server host name.
3. Select Properties.
4. Click Export. Save the certificate using .pem format.

To import the SSL certificate:

1. Tasks > Certificates, Keys and Secrets > Manage Certificates.
2. Click Import. Locate the saved certificate.
3. Click Load. The import certificates dialog box appears with the certificate highlighted.
4. In Certificate import options, click Import as Trust Anchor.
5. Click OK.

Configure the FIP Authentication for Dual Gateway

Ensure that you configure the FIP Authentication otherwise the dual gateway scenario will fail with a client authentication
error. See Create FIP Authentication for Dual Gateways.

 51

 CA API Management OAuth Toolkit 4.3

Update Custom 3.x or 4.0.00 Policies Containing the Decode Json Web Token

 This
task is required only if you have created custom policies in OTK 3.x or 4.0.00 that contain the Decode Json Web Token
assertion. The Decode Json Web Token assertion was modified in OTK 4.0.00 CR01.

Perform the following procedure to ensure that policy processing stops when an invalid JWT signature is detected:

• Search for instances of the Decode Json Web Token assertion
• Add a Compare Expression assertion immediately following the Decode JSON Web Token Assertion and have it test

for ${<prefix>.valid} = true. If the JWT signature fails, ${<prefix>.valid} returns 'false' causing the Compare Expression
Assertion to fail.

How to Identify Instances of the "Decode JSON Web Token Assertion"

Do the following steps to identify all policies that contain a Decode JSON Web Token Assertion:

1. Access a privileged shell.
2. Run the following command:

mysql ssg -u gateway -p -e "select name from policy where xml like
 \"%L7p:DecodeJsonWebToken%\""

3. Make note of the results. They list all the policies and services that contain the assertion.
4. Log in to the Policy Manager either as the administrator or as someone with permissions to modify all policies/

services.
5. Open a policy that is identified by the MySQL command above.
6. Press Ctrl-F to invoke the Search bar and then type "Decode Json Web Token” to show all instances of the assertion

in the policy.
7. Click a search hit to go to the line in the policy.
8. Add the Compare Expression Assertion in the appropriate place. This is described next.

Where to place the Compare Expression Assertion

Where you place the Compare Expression Assertion depends on the policy logic in use at the branch. These are the main
scenarios:

Decode Json Web Token Assertion in Default Policy

In this case, simply place the Compare Expression assertion immediately following the Decode Json Web Token
assertion:

Decode Json Web Token inside an ‘All assertions must evaluate to true’ Assertion

Similar to the above, place the Compare Expression assertion within "All assertions...", immediately following the Decode
Json Web Token assertion:

 52

 CA API Management OAuth Toolkit 4.3

Decode Json Web Token inside an ‘At least one assertion must evaluate to true’ Assertion

In this instance, you must enclose both the Decode Json Web Token and Compare Expression assertions within a new
"All assertions must evaluate to true" assertion.

How to Configure the Compare Expression Assertion

Configure the Compare Expression Assertion to test whether the ${ <prefix> .valid} context variable is 'true', where
the "<prefix>" is defined in the Decode Json Web Token Assertion. For example, if the prefix is 'output', you define the
comparison: ${output.valid} == true. The properties dialog should look like this:

 53

 CA API Management OAuth Toolkit 4.3

Configure Authentication

By default, OAuth policies related to client-certificate validation and SAML token-signing validation include sections where
authentication is disabled. Attempting to use the endpoints affected by these assertions fails unless manual validation
configuration is completed.

Dual Gateway

Policies provided with the CA Mobile API Gateway include endpoints that are used to access storage locations
and execute validations. To access these endpoints, the policies require a mutual SSL connection (SSL with client
authentication) and verify that the SSL handshake includes a client certificate. Additional manual configuration verifies the
client certificate.

Click the workflow image to access configuration instructions.

Create FIP Authentication for Dual Gateways

Selection of the OAuth validation and storage endpoints during installation is optional. However, if selected, you
must configure client certificate verification.

SAML Support

Policies provided with the CA Mobile API Gateway support the SAML 2.0 Bearer Assertion grant type, which uses a
SAML token to authenticate users. By default, the OAuth policies validate the SAML token signature. Additional manual
configuration verifies that the signature was generated by a trusted party.

 Click the workflow image to access configuration instructions.

 Support the SAML Grant Type

If you do not intend to support SAML token, no further action is required.

 54

 CA API Management OAuth Toolkit 4.3

Token Configuration
The following topics relate to token creation, configuration, and behavior:

Introduction to Token Types

ID Token

ID Token is a token issued as a result of user authentication. For more information about ID tokens, see http://openid.net/.

Access Token

Access Token is used by an application to access API on behalf of a user. The two formats of tokens supported in OTK
are UUID (default) and JSON Web Token (JWT). For more information about JWT tokens, see JSON Web Token.

Refresh Token

Refresh Token is used to obtain a new access token. It has a longer lifetime than access token. The user does not need to
log in every time an access token expires. For customization of the refresh token, see Configure Refresh Token Behavior.

Understanding Access Tokens

In response to a successful client authorization request, the OTK Authorization server generates an access token,
which is returned to the client and used to access an API. The access token is consumed by protected resources and
is validated for the expiration and status to determine if the request to access to the resource is permitted. The granted
scope validation is optional by the configuration in the API.

The OTK supports generation and validation of two types of access token:

UUID Access Tokens

UUID is the default access token format, for backward compatibility. Only the issuing Authorization server can validate the
UUID access token. The token can be revoked through the OAuth Manager or a client call to the revocation endpoint. The
Authorization server generates UUID formatted access tokens. When an incoming request presents a UUID access token,
the database is queried and the token is validated.

Associated policies:

• OTK Generate OAuth Token policy – generates a UUID access token.
• OTK Token Lifetime Configuration policy – contains the default setting for the oauth2_access_token_lifetime

context variable.
• #OTK Token Lifetime Configuration policy – provides customization of the settings in the OTK Token Lifetime

Configuration policy.

JWT Access Tokens

NOTE
The JWT access token is now supported for applications built on CA Mobile API Gateway.

The characteristics of the JWT access token are:

 55

http://openid.net/
https://tools.ietf.org/html/rfc7519

 CA API Management OAuth Toolkit 4.3

• The JWT is signed with a private key and can be validated without calling the authorization server
• Includes more information than a UUID token
• Claims in JWT payload are visible to clients (JSON format)
• Resource server and Clients can verify the token using the RS256 signing algorithm
• JTI in the JWT can be used as a UUID token

For more information on how to enable JWT access token, how the validation is performed, and how to disable calls to
authorization server for validation, go to Configure JWT Access Tokens.

 Example of a JWT access token:

The header of the JWT contains the kid claim value which references a public key that corresponds to the public JWK
(JSON Web Key).

{

 "typ":"jwt",

 "alg": "RSA256",

 "kid": "key_id_of_used_private_key"

}

The payload of the JWT contains the claims including the scopes and the JTI (JWT ID).

{
 "iss": "https://example.com",
 "iat": 1519860220,
 "aud": "63e8c4b0-dbdf-4b99-8551-2f2b0bcd80ab",
 "exp": 1519863820,
 "jti": "d5ff6a3c-5744-488b-8882-54e5532db5f9",
 "token_details": {
 "scope": "openid email profile openid_client_registration",
 "expires_in": 3600,
 "token_type": "Bearer"
 }
}

Configure Refresh Token Behavior

You can customize the reuse and expiration behavior of the refresh token.

The default behavior is as follows:

1. A refresh token is for one-time use only.
2. When a refresh token is used, a new refresh token is issued with a new expiration value.

To customize the default behavior for all refresh tokens:

1. In the Policy Manager, open the OTK OVP Configuration policy. Locate the policy in OTK/Policy Fragments/
configuration/

2. Copy the following assertions:
a. Set Context Variable reuse_refresh_token
b. Set Context Variable reuse_refresh_expiration

3. Open the #OTK OVP Configuration policy. Locate the policy in OTK/Customizations/
4. Paste the assertions.
5. Double-click each assertion and set the Expression field to true or false.

 56

https://example.com/

 CA API Management OAuth Toolkit 4.3

6. Click OK.
7. Save and Activate the policy.

Context Variable Notes
reuse_refresh_token Either true or false.

If false, the refresh token is for one-time use only within the
configured expiration time. After the refresh token is used, the
token is deleted. A new refresh token is issued.
If true, the same refresh token can be reused multiple times until
the configured expiration time.

reuse_refresh_expiration Either true or false.
Determines whether a new or the original expiration time is used
for the refresh token.
If false, when a refresh token is used, a new expiration time is
issued.
If true, the original expiration time is maintained for any newly
issued or reused refresh token.

Set the Maximum Token Count

Set the maximum number of tokens that are allowed per resource owner and client. When the maximum number is
exceeded, either deny the request and return an error, or cycle the tokens by adding the new token and removing the
oldest.

For example,

1. With the max_oauth_token_count set to 5, all clients can access up to five instances of the same app without logging
out of the first instance.

2. When a client attempts to log in to more than five instances, the max_oauth_token_behaviour setting is applied. If
set to cycle, the client is logged out of the first instance and logged into a new instance. If set to error, the client is not
logged into the new instance and an error is returned.

To set the maximum number of allowed tokens per resource owner and client:

1. Open the OTK Storage Configuration policy. Find the policy in OTK/Policy Fragments/configuration.
2. Copy the following assertions:

a. Set Context Variable max_oauth_token_count
b. Set Context Variable max_oauth_token_behaviour

3. Open the #OTK Storage Configuration policy. Find the policy in OTK/Customizations.
4. Paste the assertions.
5. Double-click the assertions and modify the default values.
6. Click OK.
7. Save and Activate.

Context Variable Notes
max_oauth_token_count The number of OAuth tokens that are allowed per resource owner

and client application.
max_oauth_token_behaviour Either cycle or error.

If cycle, the oldest token is removed and the new token is issued.
If error, the new token is not issued. An error is returned.

 57

 CA API Management OAuth Toolkit 4.3

Implement Client-Specific Configuration

You can configure token behavior for a specific client.

For example, to customize the reuse refresh token behavior for a specific client, open OAuth Manager, select the client,
and add context variables to the custom field.

{

"reuse_refresh_token":"true"

"reuse_refresh_expiration":"true"

}

Further policy changes are required to capture the custom values. See Client-Specific Customization.

Configure JWT Access Tokens
This page explains how to generate and configure OAuth Access Tokens as JSON Web Tokens (JWTs).

Associated policies:

• OTK Generate JWT OAuth Token – Generates a JWT access token
• #OTK Generate JWT OAuth Token – Allows you to customize the JWT access token. Includes sample code that

inserts a preferred user value into the JWT payload if the scope includes OpenID.

Generate a JWT Access Token

By default, the Authorization server generates UUID formatted OAuth Access tokens. The following instructions show
how to enable the Authorization server to issue an OAuth access token in JWT format. Custom configuration is performed
within the policy by setting context variables and enabling or disabling assertions.

To enable the Authorization server to generate JWT Access tokens:

1. In Policy Manager, open the #OTK Generate JWT OAuth Token policy.
By default, the assertions in this policy are disabled.

2. Enable all assertions in the policy. You can select multiple assertions, right-click, and select Enable Assertion.
3. Disable the All assertions must evaluate to true folder. This folder provides additional configuration for OpenID

Connect. See Add an Additional Claim to the JWT Payload for more details.

 58

 CA API Management OAuth Toolkit 4.3

4. Save and Activate the policy.

The following example shows the default JWT access token claims:

Context Variable Notes

exp The date and time the access token expires.

payload

Add Custom Claims to the JWT Payload
Custom claims are used to provide additional information to the protected API for validation or access control. Claims can
be added to the JWT as long as the payload maintains a valid JSON format.

NOTE
If you add claims to the JWT payload, do not include any sensitive information that clients should not see, such
as password.

The procedure to add additional claims is as follows:

• Pass in the value
• Extract the value
• Set a value to the payload context variable

Add a Custom Claim

To add a custom claim to the default JWT Payload:

1. Prepare the #OTK Generate JWT OAuth Token policy as described above. Leave the All assertions must evaluate to
true folder disabled.

2. Double-click the "Set Context Variable payload..." assertion.

 59

 CA API Management OAuth Toolkit 4.3

The payload properties appear with the default claims expressed in JSON format.
3. Edit the Expression field, adding your custom claims. Click OK.

4. Save and Activate the policy.

Add an OpenID Connect Custom Claim

The disabled folder in the #OTK Generate JWT OAuth Token policy contains assertions that check that OpenID Connect
is in scope (openid), and add the preferred_username claim. The preferred_username claim allows access to the userinfo
endpoint: openid\connect\v1\userinfo.

Use the example to add any OpenID Connect dependent claim.

To set the preferred_username claim:

1. Prepare the #OTK Generate JWT OAuth Token policy as described above.
2. Enable the All assertions must evaluate to true folder. The preferred_username claim is pre-configured.
3. Save and Activate.

 60

 CA API Management OAuth Toolkit 4.3

Validate a JWT Access Token

You can validate a JWT Access Token with or without querying the Authorization Server.

Validate With the Authorization Server Database

OTK validates an access token by first checking if it is a UUID or a JWT.

If a JWT is detected, the OTK verifies the signature, then extracts the jti from the JWT to validate it the same way as the
UUID token.

 61

 CA API Management OAuth Toolkit 4.3

 62

 CA API Management OAuth Toolkit 4.3

Validate Without the Authorization Server Database

You can customize the validation behavior in the #OTK Validate JWT OAuth Token policy not to require the Authorization
Server database query. By default, OTK supports validation of the signature only. To extract and validate additional
information from the access token, such as iss, exp, aud, and scope, customize the validation.

 63

 CA API Management OAuth Toolkit 4.3

Disable access to Authorization Server database and Customize validation of JWT claims:

1. Open the #OTK Validate JWT OAuth Token policy.

 64

 CA API Management OAuth Toolkit 4.3

2. Enable the Evaluate JSON Path Expression assertions. Enabling extracts the listed values from the access token.
Add logic to how the values should be validated by building your own policy.

3. Disable the Set Context Variable querry_db as String to: true assertion.
4. Save and Activate the policy.

NOTE

If you do not use the Authorization server database for JWT validation, revoking the access token through
OAuth Manager has no effect. The JWT access token remains valid until it expires.

Client Authentication
Client authentication is a method for a client to authenticate to the token endpoint. Use Client authentication in conjunction
with some grant types to form a complete authentication request. For default grant types in OTK, see Support Custom
Grant Types. By default, a client is authenticated with a Client ID and a Shared Secret.

The authentication method that is used is based on what is registered during client registration. For OAuth client
registration, see Dynamic Registration.

Client Authentication Using JWT

JWT as client credentials is in general a more secure solution than a shared secret. All grant types that require Client to
be authenticated are supported. Some advantages are:

• JWT can carry more information that helps server to verify the client.
• Replay attack protection prevents JWT to be used more than once.
• The private key JWT only stays on client side.
• Using jwks_uri allows client to rotate key without the need to update the new public key to the server.

When JWT is selected for client authentication, replay attack is performed to prevent a JWT being used more than once.
The default check is done through cache for performance reasons and will not work for cluster environment. To disable the
replay attack protection or to use a DB query for a JWT identity check, modify #OTK Replay Attack Protection policy.

 65

 CA API Management OAuth Toolkit 4.3

Validation of JWT Client Credentials

The signature that is used to sign the JWT assertion and the following claims are always verified.

• iss: matches the identifier of the client.
• aud (audience): contains the authorization server token endpoint.
• sub: matches the identifier of the client.
• exp (expiry time): is greater than the current time.
• jti: will be cached until expiry time, and replay attack protection is performed

Create FIP Authentication for Dual Gateways
An X.509 FIP must be implemented to validate client certificates.

NOTE

In the dual-gateway scenario, perform all tasks described on this page on the Internal Gateway.

Before implementing a FIP, ensure that any needed certificates have been imported.

In Policy Manager, go to Tasks, Certificates, Keys and Secrets, Manage Certificates.
Certificates that must be imported include:

• The Gateway's own default SSL certificate
• The SSL certificate of any Gateway that is connecting as a client.

In the dual-gateway scenario, the Internal Gateway must import the SSL certificate of the External Gateway.

Figure 2: FIP-MAG

Create a FIP

To create a FIP:

1. Navigate to Tasks, Identity Providers, Create Federated Identity Provider.
2. Click Provider Name and type a name. For example: "Gateway as a Client Identity Provider".
3. For Credential Source Type Allowed, select only the X.509 Certificate checkbox. Leave the SAML Token checkbox

unchecked.
Click Next.

4. Do not add any trusted certificates to this FIP. Leave the box blank.
Click Next. A warning box appears. Click OK.

5. For Validation, select Validate Certificate Path.
6. Click Finish.

Click the Identity Providers tab to verify that the FIP was created.

 66

 CA API Management OAuth Toolkit 4.3

Create a Federated User

For each client connecting to the validation and storage endpoints (possibly including the Gateway itself), create a
Federated User within this new FIP. Identify the client’s certificate for its outbound TLS connection.

To create a federated user:

1. In Policy Manager, select the Identity Providers tab.

2. Right-click the "Gateway as a Client Identity Provider" FIP you created and select Create User.
The Create Federated User dialog appears.

3. Click X.509 Subject DN and enter the complete DN of the client certificate that will be imported for this user.
For example: CN=gateway.example.com
A default user name value is generated.

4. Select Define Additional Properties and click Create. The user properties dialog box appears.
5. Click the Certificate tab and click Import.
6. Import the SSL certificate of the client gateway as this user's certificate.

If the gateway is connecting to itself, select Import from Private Key Certificate Chain and choose the default SSL
key.
If an external client (for example, a MAG in the DMZ) is connecting to these endpoints, select Retrieve via
SSL Connection (HTTP or LDAPS URL). Type a URL that leads to a listen port on the external client. For
example: https://clientgateway.example.com:8443/

7. Click Next. View certificate details.
8. Click Finish.

If the user's subject DN is different from the one appearing in the imported certificate, a warning appears.
9. Click OK to close the properties window.

Add Authentication Against FIP

Add the authentication against the FIP you created to the OTK FIP Client Authentication Extension. This extension is
included in the read-only OTK FIP Client Authentication policy.

To add authentication against a FIP:

1. Go to OTK/Customizations/authentication/ and double-click the OTK FIP Client Authentication Extension.
The extension policy opens in the right panel.

2. Enable the code block within the extension by right-clicking the disabled code and selecting Enable Assertion.

 67

 CA API Management OAuth Toolkit 4.3

3. From the Access Control folder in the top left panel, locate the Authenticate Against Identity Provider

assertion
4. Drag the Authenticate Against Identity Provider assertion and drop it onto the associated Comment line in the OTK FIP

Client Authentication Extension.A selection window appears when you drop the assertion.Select the Identity Provider
you created as your FIP and click OK.

5. Save and Activate.

No further configuration is required. By default, the OAuth storage and validation endpoints use the OTK FIP Client
Authentication encapsulated assertion.

Login and Consent Behavior
Client access to a protected resources includes two distinct actions:

• Providing credentials for login
• Providing user consent

The login action authenticates. The consent action grants authorization.

The following sections describe how to customize the default login and consent behaviour:

For an example of the default login and consent behaviour see, Run the OAuth 2.0 Test Client.

See the API documentation for complete endpoint details.

Initial Request

The initial client request is directed to the /auth/oauth/v2/authorize endpoint.

Customize the request by including optional parameters in your request.

Required Parameters Notes
client_id The 'client_id' of the requesting client.

 68

 CA API Management OAuth Toolkit 4.3

response_type See Response Types below.
Optional Parameters Notes
redirect_uri A 'redirect_uri' that was registered for this client.

Required if multiple redirect_uri's have been registered for this
client.
If provided, only requests using a registered redirect_uri of this
client are granted by the OAuth server. If the parameter is not
included, the OAuth server uses the registered redirect_uri. If
multiple redirect_uris have been registered, the request fails. If a
redirect_uri is included and none was registered, the OAuth server
uses the one included in the request

scope Only scope values that were registered for this client are granted.
If only non-matching scope values are requested, the request fails.
For example:
• scope=openid is required for openid requests.
• scope=msso is required for clients using the Mobile SDK.

nonce Used to mitigate replay attacks. The authorization server rejects
a second request if it has the same nonce value. Required when
response_type=token id_token.

display Uses one of the following values:
• page – displays an HTML web page.
• social_login – for display on mobile devices. Used with Mobile

API Gateway only. Creates a JSON message response
containing a list of social login providers.

prompt Uses one or more of the following values:
• none (cannot be combined with other values)
• login
• consent
The prompt value indicates whether the server should prompt
the user for login and/or consent. Default setting: prompt=login
consent.
Notes:
If prompt=none. Indicates the server does not request user
authentication or request consent as long as the user is currently
logged in and the client has previously received requested
grants.A cookie is used.
If prompt=login, the authorization server must reauthenticate the
user. The user is asked for credentials.
If prompt=consent, the current user must have an active oauth
session using the same client and the same scope.

id_token_hint Contains a previously issued id_token.
If id_token_hint is included, then prompt=none must also be
included.

acr_values A space separated list of different values that indicates which
Authentication Context Class Reference values are acceptable
for the user authentication. Based on the requested acr claim
value, the Authorization Server can set thresholds for allowing
authentication, requesting re-authentication, or denying
authentication.The value is forwarded to the /authorize/login API
where the accepted values are defined and any thresholds can be
set. Values appear in order of preference. The acr values should
be compared against a configured acr_level. That acr_level is then
used when creating an id_token.

 69

 CA API Management OAuth Toolkit 4.3

state Value opaque to the server, used by the client to track its session.
It will be returned as received.

Response Types

response_type Flow Notes Request Example Response Notes
code Authorization Clients using

response_type=code

are using a more secure
method than token with
regards to visibility of
issued tokens. The
flow involves multiple
steps that are required
between sending the
initial request to receiving
an access_token..

 GET /authorize?
response_type=code
&client_id=s6BhdRkqt3
&redirect_uri=https
%3A%2F
%2Fclient.example.org
%2Fcb
&scope=openid
%20profile
%20email
&nonce=n-0S6_WzA2Mj
&state=af0ifjsldkj
HTTP/1.1 Host:
server.example.com

The authorization code
is issued from the
authorization endpoint
and exchanged for an
access token from the
token endpoint.

token Implicit Clients
using response_type=token
 are considered to be
'public' clients and do not
receive a refresh_token.

GET /authorize?

response_type=token

&client_id=123abc34t2

&redirect_uri=https

%3A%2F

%2Fclient.example.org

%2Fcb

Host:

 server.example.com

This type of client may
be implemented in
JavaScript.The client
receives a login page that
requests user credentials.
On success, the client
receives a token from the
authorization endpoint.

id_token Implicit A successful response
must include the
parameter id_token. If
a redirect_uri is supplied,
the client is redirected
after granting or denying
access.

GET /authorize?

 response_type=id_token

 &client_id=s6BhdRkqt3

 &redirect_uri=https

%3A%2F

%2Fclient.example.org

%2Fcb

 &scope=openid

%20profile%20email

 &nonce=n-0S6_WzA2Mj

 &state=af0ifjsldkj

 HTTP/1.1

 Host:

 server.example.com

The value of
the id_token parameter
is the ID Token, which is
a signed JWT, containing
three base64url encoded
segments separated by
period ('.') characters.

 70

 CA API Management OAuth Toolkit 4.3

code id_token Hybrid The 'code id_token'
response_type must be
used with scope=openid.

GET /authorize?

 response_type=code

%20id_token

 &client_id=s6BhdRkqt3

 &redirect_uri=https

%3A%2F

%2Fclient.example.org

%2Fcb

 &scope=openid

%20profile%20email

 &nonce=n-0S6_WzA2Mj

 &state=af0ifjsldkj

 HTTP/1.1

 Host:

 server.example.com

The ID token is retrieved
from the token access
endpoint. Verifying and
decoding the ID token
exposes the claims.

token id_token Implicit The 'token id_token'
response_type must be
used with scope=openid.

GET /authorize?

 response_type=id_token

%20token

 &client_id=s6BhdRkqt3

 &redirect_uri=https

%3A%2F

%2Fclient.example.org

%2Fcb

 &scope=openid

%20profile%20email

 &nonce=n-0S6_WzA2Mj

 &state=af0ifjsldkj

 HTTP/1.1

 Host:

 server.example.com

The client receives a
login page that requests
user credentials.

 71

 CA API Management OAuth Toolkit 4.3

code token Hybrid A successful response
must include an Access
Token, an Access
Token Type, and an
Authorization Code.

GET /authorize?

 response_type=code

%20token

 &client_id=s6BhdRkqt3

 &redirect_uri=https

%3A%2F

%2Fclient.example.org

%2Fcb

 &scope=openid

%20profile%20email

 &nonce=n-0S6_WzA2Mj

 &state=af0ifjsldkj

 HTTP/1.1

 Host:

 server.example.com

code id_token token Hybrid The 'code id_token
token ' response_type
must only be used with
scope=openid.
A successful response
msut include an
Authorization Code,
an id_token, an Access
Token, and an Access
Token Type.

 GET /authorize?

 response_type=code

%20id_token

%20token

 &client_id=s6BhdRkqt3

 &redirect_uri=https

%3A%2F

%2Fclient.example.org

%2Fcb

 &scope=openid

%20profile%20email

 &nonce=n-0S6_WzA2Mj

 &state=af0ifjsldkj

 HTTP/1.1

 Host:

 server.example.com

none The Authorization Server
should not return an
OAuth 2.0 Authorization
Code, Access Token,
Access Token Type, or
ID Token in a successful
response to the grant
request.

 72

 CA API Management OAuth Toolkit 4.3

Login Request

When prompt=login, the login request is sent to the /auth/oauth/v2/authorize/login endpoint.

This endpoint handles the following login actions:

• login
• cancel
• reset

The endpoint validates user credentials.

Contains the consent parameter which is none or active. Only active sessions can be granted at /authorize/consent.

Consent Request

When the consent parameter from the login endpoint is active, the consent request is sent to the /auth/oauth/v2/
authorize/consent endpoint.

The API returns an HTML page for the user to grant or deny the request. Handles the grant or deny action requested
from the consent page.

Success returns the following parameters within a URL fragment to the redirect_uri registered with the client:

Parameters Notes
access_token The issued OAuth 2.0 access token.
expires_in The access_token lifetime in seconds
token_type The OAuth 2.0 token type. Must be "Bearer".
scope The granted scope values which may differ from the requested

values.
id_token The id_token (represented as JWT) associated with the

authenticated session.
Issued for response_type=token id_token if the requested scope
includes openid.

id_token_type The type of id_token. This is a OTK extension to allow the creation
of other types. For example: SAML

state Value opaque to the server, used by the client to track its session.
Returned as received.

Grant Types

The following table describe requests for an access_token using a specified grant_type. For example:
grant_type=authorization code

Grant Type Notes
password Use this grant_type value if the client was built by the enterprise

that also implements the OAuth token server.
Example: { "access_token":"115b8c ... 11a5",
"token_type":"Bearer",
"expires_in":3600,
"refresh_token":"74b29d19-8b ... 7bb6bd1",
"scope":"openid email" }

credentials Use this grant_type value if the client is acting on its own behalf.
No user consent is required.
Use this grant_type value when response_type=token.

 73

 CA API Management OAuth Toolkit 4.3

authorization code Use this grant_type value when response_type=code is used and
the client receives the authorization_code attached to a redirect
URI.
The client exchanges the authorization_code for an
access_token.
If the client includes "openid" as a scope value, additional OpenID
Connect keys are included in the response.

urn:ietf:params:oauth:grant-type:jwt-bearer Use this grant_type value when the client is in possession of an
id_token (represented as JWT) of an authenticated user.
Only id_tokens (JWT) that were issued by the OAuth server are
accepted.

urn:ietf:params:oauth:grant-type:saml2-bearer Use this grant_type value if the client is in possession of a SAML
2.0 token of an authenticated user. This scenario is useful in cases
of federation where the SAML 2.0 token was signed by a trusted
party.

For more information, see the following sections on each grant type:

grant_type=password

This grant_type can be used if the client was built by the enterprise that also implements the OAuth token server.

Request

 Method: POST
 Header: content-type: application/x-www-form-urlencoded
 Header: authorization: Basic base64(client_id:client_secret) (This header

can only be used if 'client_id' and 'client_secret' are NOT found
within the message body and vice versa!)

 Endpoint: /auth/oauth/v2/token
 Parameters: grant_type=password&username=a-username&password=a-user

s-password&client_id=a-client_id&client_secret=a-client_secret&s
cope=a-list-of-scope-values

 Optional: scope: Only SCOPE values that have been registered for the
client will be granted by the OAuth server

Response

 Header: status: 200
 Header: content-type: application/json
 Body: Example: { "access_token":"115b8c ... 11a5",

"token_type":"Bearer", "expires_in":3600,
"refresh_token":"74b29d19-8b ... 7bb6bd1", "scope":"openid
email" }

 74

 CA API Management OAuth Toolkit 4.3

grant_type=client_credentials

This grant_type can be used if the client is acting on its own behalf. No user consent is required.

Request

 Method: POST
 Header: content-type: application/x-www-form-urlencoded
 Header: authorization: Basic base64(client_id:client_secret) (This header

can only be used if 'client_id' and 'client_secret' are NOT found
within the message body and vice versa!)

 Endpoint: /auth/oauth/v2/token
 Parameters: Parameters: grant_type=client_credentials&client_id=a-

client_id&client_secret=a-client_secret&scope=a-list-of-scope-
values

 Optional: scope: Only SCOPE values that have been registered for the
client will be granted by the OAuth server

Response

 Header: status: 200
 Header: content-type: application/json
 Body: { "access_token":"115b8c ... 11a5", "token_type":"Bearer",

"expires_in":3600, "scope":"openid email" }

grant_type=authorization code

Exchange the authorization_code for an access_token. A client has received the authorization_code attached to a redirect
URI. The client now exchanges the authorization_code for an access_token by using grant_type 'authorization_code'.

Request

 Method: POST
 Header: content-type: application/x-www-form-urlencoded
 Header: authorization: Basic base64(client_id:client_secret) (This header

can only be used if 'client_id' and 'client_secret' are NOT found
within the message body and vice versa!)

 Endpoint: /auth/oauth/v2/token
 Parameters: grant_type=authorization_code&code=the-received-authorization-

code&client_id=a-client_id&client_secret=a-client_secret&redirect
_uri

 Optional: redirect_uri: The value has to be included if it has been used in
the initial request. It also has to match the original value

Response

 Header: status: 200
 Header: content-type: application/json

 75

 CA API Management OAuth Toolkit 4.3

Response

 Body: { "access_token":"115b8c ... 11a5", "token_type":"Bearer",
"expires_in":3600, "refresh_token":"74b29d19-8b ... 7bb6bd1",
"scope":"openid email" }

If the client included 'openid' as SCOPE in his request, additional keys are included in the response:

..."id_token":"eyJ0eXAiO1v8 ... JZu_LsN851VtfC5pcIqJc", "id_token_type":"urn:ietf:params:oauth:grant-type:jwt-

bearer" ...

The id_token (JWT) can be used with grant_type=urn:ietf:params:oauth:grant-type:jwt-bearer.

grant_type=urn:ietf:params:oauth:grant-type:jwt-bearer

This grant_type can be used if the client is in possession of an id_token (represented as JWT) of an authenticated user.
Only id_token (JWT) that were issued by the OAuth server are accepted.

Request

 Method: POST
 Header: content-type: application/x-www-form-urlencoded
 Header: authorization: Basic base64(client_id:client_secret) (This header

can only be used if 'client_id' and 'client_secret' are NOT found
within the message body and vice versa!)

 Endpoint: /auth/oauth/v2/token
 Parameters: grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Aj

wt-bearer&assertion=a-jwt&client_id=a-client_id&client_secret=a-c
lient_secret&scope=a-list-of-scope-values

 Optional: scope: Only SCOPE values that have been registered for the
client will be granted by the OAuth server

Response

 Header: status: 200
 Header: content-type: application/json
 Body: { "access_token":"115b8c ... 11a5", "token_type":"Bearer",

"expires_in":3600, "refresh_token":"74b29d19-8b ... 7bb6bd1",
"scope":"openid email" }

grant_type=urn:ietf:params:oauth:grant-type:saml2-bearer

This grant_type can be used if the client is in possession of a SAML 2.0 token of an authenticated user. This scenario is
useful in cases of federation where the SAML 2.0 token was signed by a trusted party.

Request

 Method: POST
 Header: content-type: application/x-www-form-urlencoded
 Header: authorization: Basic base64(client_id:client_secret) (This header

can only be used if 'client_id' and 'client_secret' are NOT found
within the message body and vice versa!)

 76

 CA API Management OAuth Toolkit 4.3

Request

 Endpoint: /auth/oauth/v2/token
 Parameters: grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3A

saml2-bearer&assertion=a-base64-encoded-saml-token&client_id
=a-client_id&client_secret=a-client_secret&scope=a-list-of-scope-
values

 Optional: scope: Only SCOPE values that have been registered for the
client will be granted by the OAuth server

Response

 Header: status: 200
 Header: content-type: application/json
 Body: { "access_token":"115b8c ... 11a5", "token_type":"Bearer",

"expires_in":3600, "scope":"openid email" }

grant_type=refresh_token

This grant_type can be used if the client is in possession of a refresh_token. The request will only be successful if the
refresh_token has not expired. The parameter 'SCOPE' can only include the same or a subset of values that were
originally requested. The refresh_token can only be use once.

Request

 Method: POST
 Header: content-type: application/x-www-form-urlencoded
 Header: authorization: Basic base64(client_id:client_secret) (This header

can only be used if 'client_id' and 'client_secret' are NOT found
within the message body and vice versa!)

 Endpoint: /auth/oauth/v2/token
 Parameters: Parameters: grant_type=refresh_token&refresh_token=a-

refresh-token&client_id=a-client_id&client_secret=a-
client_secret&scope=a-list-of-scope-values

 Optional: scope: Only SCOPE values that have been registered for the
client will be granted by the OAuth server

Response

 Header: status: 200
 Header: content-type: application/json
 Body: { "access_token":"115b8c ... 11a5", "token_type":"Bearer",

"expires_in":3600, "refresh_token":"74b29d19-8b ... 7bb6bd1",
"scope":"openid email" }

Customizing Authorization Server Settings

See Configure the Authorization Server.

 77

 CA API Management OAuth Toolkit 4.3

Multiple Session Support
Describes how to configure OAuth policies to support multiple sessions for a single resource owner/client id combination.

Business Value

Mobile app developers want to run multiple instances of their apps to provide a better experience for end users by:

• Allowing users to run an app from different tabs in their Web browser
• Persisting data in the previous session
• Using the same user credentials to access a previous session

Restrictions

• Only OAuth 2.0 token flows support multiple app instance functionality
• OAuth 1.0 token flows (/auth/oauth/v1/token) still work, but multiple app instance functionality is not available

Configure Multiple Session Support

To configure multiple session support:

1. Access the customizable #OTK Storage Configuration policy:

 78

 CA API Management OAuth Toolkit 4.3

2. Configure the following context variables.

Context Variable Description Values

max_oauth_token_count Maximum number of OAuth tokens per
app and resource owner combination.

Default: 1
Options: String
Note: Values between 5-10 are suitable
for most implementations. If you use
higher values, performance can be
affected.

max_token_behaviour Action when the number of OAuth tokens
per app and resource owner combination
is reached.

Default: cycle
Options:
• cycle = Grant a new token, but

remove the oldest token.
• error = Return an error ("Max number

of tokens reached"), and deny further
tokens.

By default, the max_oauth_token_count is set to 1, indicating only a single session is allowed for the same resource
owner/client id combination. To allow for multiple sessions by the same resource owner/client id combination, increase the
max_oauth_token_count value. When the set value is reached, no additional sessions can be started.

For example, to allow an app in a Java script client to be opened across multiple browser tabs, set a custom value for the
max_oauth_token_count.

In OTK versions before 4.0, only one session was permitted for the same resource owner/client id combination.

High Volume Issue

A high volume of concurrent requests from the same resource owner/client can cause the max_oauth_token _count
restriction to be ignored. If you encounter this behavior, and consider the request volume acceptable, adjust the
configured value to better accommodate the concurrent request load. Run the database clean up task to remove unused
persisted tokens. Query the number of sessions in the database to identify any misuse (deliberate request flooding).

Solutions to mitigate the issue with a high volume of concurrent requests:

• Design apps that do not request multiple concurrent sessions from the same resource owner/client.
• Test your app and check the database for the number of concurrent sessions. If the configured number of acceptable

sessions is exceeded, adjust the max_oauth_token count accordingly.
• Configure the OTK to accept an infinite number of sessions. Clean up the database. Query the database for maimum

number of sessions to identify peaks that may be an indicator for misuse.

Support Custom Grant Types
OAuth Tool Kit lets you grant limited access to resources to a third party without exposing the credentials. Grant types are
various methods to obtain access tokens and to allow different types of access to resources.

Each of the following default grant types has a corresponding policy found in OTK/Policy Fragments/grant_types:

 79

 CA API Management OAuth Toolkit 4.3

• authorization_code
• client_credentials
• jwt-bearer
• password
• refresh_token
• SAML

NOTE

For information on customizing the SAML grant type, see Support the SAML Grant Type.

The OAuth 2.0 specification also supports custom grant types.

To support a custom grant type, the following tasks are required:

Create the Custom Grant Type

To create an OAuth 2.0 custom grant type:

1. Open the OTK grant_type=CUSTOM extension policy found in OTK/Customizations/grant_types.
The policy provides an example implementation for setting up grantTypeCustom1 and grantTypeCustom2.
The target policy for this extension is located at the /auth/oauth/v2/token endpoint.

2. Double-click the Compare Variable assertion for grantTypeCustom1.
3. Select the rule, click Edit, and type the name of your custom grant type. For example, "phone".

Use the check box to indicate whether the name is case-sensitive.
4. Click OK.

The next steps persist the cache contents in the database.
5. From the upper panel of the Policy Manager, under the Assertions tab, type OTK Token Storage.

Insert one of the assertions into the OTK grant_type=CUSTOM extension policy.

Assertion Notes

OTK Token Storage (access_token) Persists an OAuth 2.0 access_token. The token secret is
optional.

OTK Token Storage (access_token, refresh_token) Persists an OAuth 2.0 access_token and refresh_token. The
token secret is optional.

OTK Token Storage (oauth_token) Persist OAuth 1.0 token. The request_token is exchanged for
the oauth_token.

OTK Token Storage (temporary_token) Persists temporary token (authorization_code, request_token).
Token Secret and Resource Owner are optional.

6. Configure the properties for the selected OTK Token Storage assertion.
The following table shows some default configured properties for the access_token, refresh_token, and
temporary_token.

OTK Token Storage Property Variable Notes

Redirect URI ${redirect_uri} temporary_token property only

 80

 CA API Management OAuth Toolkit 4.3

Client ${client} refresh_token property only

Client Key ${client_id}

Client Name ${client_name}

Expiration ${at_expiration}

Resource Owner ${client_name}

Refresh Token Expiration ${rexpiration} refresh_token property only

Refresh Token ${rtoken} refresh_token property only

SCOPE ${scope.granted}

Token Status ENABLED

Access Token ${at_token}

Token Secret* ${token_secret}

JSON with session values ${session_output}
7. After configuring the properties to store for your custom token, click OK.

The policy is updated with the custom grant type name and the OTK Token Storage assertion.

8. Perform any additional customization such as:

– Adding a custom scope value
– Providing validation logic

9. Edit the clientResponse string for each custom grant type. By default the clientResponse is set to:
{

 "grant_type": "${grant_type}",

 "access_token":"${at_token}",

 "token_type":"Bearer",

 "expires_in":${at_lifetime},

 "refresh_token":"${rtoken}",

 "scope":"${scope.granted}"

}

10. When your customization is complete, Save and Activate.

Enable the Custom Grant Type

After the custom grant type is configured, enable it in the #OTK Configured Grant Types policy. You can enable multiple
custom grant types.

To enable the custom grant type:

1. Open the #OTK Configured Grant Types policy found in OTK/Customizations/grant_types.
2. Enable the final two assertions. These assertions set the grant_type_custom Context Variable and export the variable.

 81

 CA API Management OAuth Toolkit 4.3

The default code includes support of two custom grant types, each separated by a space.
3. Double-click the first Set Context Variable grant_type_custom assertion.

The Compare Expression Properties dialog appears.
4. Select the existing Rule and click Edit.
5. Remove the default grant type name and type the name of the custom grant type in the OTK grant_type=CUSTOM

policy.
6. For example, "phone".

Click OK.

7. Save and Activate.

Support Optional Authentication Mechanisms
For user authentication or any other type of authentication, you can integrate OTK with various Identity Providers.
The policy responsible for user authentication is OTK User Authentication that is located at OTK/Policy Fragments/
authentication. By default, username password authentication is supported. However, you can configure support for
authenticating against external directories such as LDAP or CA Single Sign-On (formerly known as SiteMinder®).
Configuration includes providing connector details and customizing policy to refer to the custom identity provider.

The following tasks that are related to optional authentication support are described:

Create a Custom Identity Provider

Creating a Custom Identity Provider allows you to authenticate requests with an existing external server, such as an LDAP
server.

 82

 CA API Management OAuth Toolkit 4.3

NOTE

An LDAP Identity Provider is only a connector to an existing LDAP directory. The Policy Manager cannot be
used to create, edit, or delete LDAP Identity Provider users or groups. To perform such tasks, use the tools that
are provided with your LDAP directory.

To create a Custom Identity Provider:

1. In the Policy Manager toolbar, navigate to Tasks, Identity Providers.
2. Select the type of Identity Provider connection to create.
3. Follow the creation wizard instructions to configure connection settings for the Identity Provider.

For more information, see the "LDAP Identity Providers" topic on the CA API Gateway documentation site.

Authenticate against a Custom Identity Provider

By default, OTK provides the Internal Identity Provider (IIP). The OTK User Attribute Lookup Extension is hard-coded with
default IIP and should only be used in test environments, not in production. Customize this policy to integrate OTK with an
Identity Provider of your choice.

To authenticate against a custom identity provider:

1. Open the OTK User Authentication Extension policy in the Customizations folder. Expand folders and show
comments.

2. Search for the ==Custom IDP comment.
3. Double-click the "Request Authenticate against Internal Identity Provider" assertion.

A list of identity providers appears.

4. Select the identity provider that you created then select OK.
5. In the same section of code, double-click the Extract Attributes for Authenticated User assertion and select the

same Custom Identity Provider.

 83

https://techdocs.broadcom.com

 CA API Management OAuth Toolkit 4.3

6. Click OK.
7. Save and Activate the policy.

NOTE

Although the LDAP identity provider stores usernames as case insensitive, MAS Storage database retrieval
is case sensitive with regards to the authenticated username and key retrieval. As a result, you can
successfully log into your cloud storage, but you can access your data only if the username meets the case-
sensitive requirements of the MAS Storage database.

Consider a policy of creating all usernames in lowercase and treating them as case sensitive.

Authenticate against CA SiteMinder

You must have an existing SiteMinder installation running and configured to work with the CA API Gateway. For
configuration details, refer to SiteMinder information in the CA API Gateway documentation.

After performing any of the following customization tasks, remember to Save and Activate the modified policies.

Provide Existing SiteMinder Configuration Properties

The property values that are entered must match the configuration of your existing SiteMinder installation.

To provide the existing SiteMinder configuration properties:

1. In the OTK/Customizations/authentication folder, open the #OTK SiteMinder Check Protected Resource policy.
2. Double-click the "Request: Check Protected Resource Against CA Single Sign-On" assertion.
3. Configure the properties.

The following screen shot contains example values only. Modify these values to match your registered SiteMinder
Configuration properties.

 84

 CA API Management OAuth Toolkit 4.3

Enable SiteMinder Authentication

By default, the SiteMinder Authentication section of the extension policy is effectively disabled by a Stop Processing
assertion.

To enable and customize SiteMinder Authentication:

1. In the OTK/Customizations/authentication folder, open the OTK User Authentication Extension policy.
2. Expand all folders. Show Comments.
3. Search for the comment: ==SiteMinder .
4. Because you are not using a Custom IDP, drag the "Stop Processing" Assertion from the SiteMinder section to the top

of the Custom IDP section.

 85

 CA API Management OAuth Toolkit 4.3

Select Authentication Credentials

To set which type of credentials are used for authentication (user authentication, or device authentication):

1. Open the OTK User Authentication Extension policy. Expand all folders. Show Comments.
2. Double-click the "Request Authenticate Against CA Single Sign-On: [siteminder]" assertion.
3. Set any of the properties.

Customize Even More

Additional customization available in the OTK User Authentication Extension policy can be performed for username, salt,
and outputs.

By default, the username context variable string is set as: ${siteminder.smcontext.attributes.ATTR_USERNAME}.

 86

 CA API Management OAuth Toolkit 4.3

You can set ${current.username}, by replacing ATTR_USERNAME with any of the SiteMinder variables shown in the
following table.

Variable Notes

ATTR_USERDN The user's distinguished name as recognized by SiteMinder.
ATTR_USERUNIVERSALID The user's universal ID. It could be the name from the LDAP.
ATTR_AUTH_DIR_OID The object ID of the directory where the user has been

authenticated.
ATTR_AUTH_DIR_NAME The name specification of the directory where the user has been

authenticated
ATTR_AUTH_DIR_SERVER The server specification of the directory where the user has been

authenticated
ATTR_AUTH_DIR_NAMESPACE The namespace specification of the directory where the user has

been authenticated.
ATTR_USERNAME The user's display name.

By default, the salt context variable is set as: ${siteminder.smcontext.attributes.ATTR_USERUNIVERSALID}

By default the outputs from this extension are: ${current.username}, ${salt}, ${third_party_sso_token} and
${third_party_sso_token_type}.

Click the "Export Variables from Fragment" assertion to modify output variables.

 87

 CA API Management OAuth Toolkit 4.3

Support the SAML Grant Type
By default, support for the SAML token grant type is disabled in the policies delivered in the OAuth Toolkit.

The following tasks are required only if you intend to support the SAML grant type:

NOTE

CA Mobile API Gateway installations: In a dual MAG scenario, perform the following tasks on the Gateway in the
DMZ.

Select SAML Options for SSL Certificates

 Certificates imported into the FIP include:

• The default certificate of the Gateway.
• The SSL certificate of any Gateway that is connecting as a client.

These certificates must have the additional options for SAML checked.

To select SAML options for SSL certificates:

1. In Policy Manager, go to Tasks, Certificates, Keys and Secrets, Manage Certificates.
2. Double-click the certificate to view properties. Select the Options tab.
3. Ensure that the two SAML options are checked. If they are not, select them and click Save.

 88

 CA API Management OAuth Toolkit 4.3

Create a FIP

To create a FIP:

1. Navigate to Tasks, Identity Providers, Create Federated Identity Provider.
2. Click Provider Name and type "OAuth SAML Identity Provider".
3. For Credential Source Type Allowed select only the SAML Token checkbox. Leave the X.509 Certificate checkbox

unchecked.

4. Click Next to add trusted certificates.

Trusted certificates include the gateways own default SSL certificate, and the certificate of any Gateway that is
connecting as a client.

5. Click Add. Click Search.
A list of certificates appears. Click the gateway's own default SSL certificate. To add any additional certificates,
use Ctrl-click.
Click Select.
The certificates appear on the Trusted Certificates list.
Click Next to set certificate validation options.

6. For Validation, select Validate Certificate Path.
7. Click Finish.

Verify the FIP was created by clicking the Identity Providers tab in the upper left panel of the Policy Manager.

Now enable the SAML grant type.

Enable the SAML Grant Type

This task is required if you intend to support the SAML grant type. Before you can enable the SAML grant type, you must
create a FIP.

The following instructions add validation of the SAML Token Signer to SAML Token Grant Type policies. The SAML grant
type is not supported until the Stop assertion is replaced with an Authenticate Against Identity Provider assertion. The FIP
is selected as the provider.

 89

 CA API Management OAuth Toolkit 4.3

To enable the SAML grant type:

1. Navigate to OTK/Customizations/grant_types and open the OTK grant_type=SAML Authentication policy.
2. Locate the Stop Processing assertion.

3. Replace the Stop Processing assertion in the policy with an Authenticate Against Identity Provider assertion. Find
the assertion under Policy Assertions/Access Control.

Drag the Authenticate Against Identity Provider assertion and drop it directly on the Stop Processing assertion.
4. A "Change Authentication Identity Provider" dialog box asks you to select an Identity Provider.

Select the OAuth SAML Identity Provider FIP you created.
Click OK.

5. Right-click the Request: Authenticate against OAuth SAML Identity Provider.
Choose Select Target Message.
Select Other Context Variable and type "bearerToken".
Click OK.

6. Verify that the assertion label is now:
${bearerToken}: Authenticate against OAuth SAML Identity Provider

7. Disable or delete the Stop Processing assertion.
8. Save and Activate the policy.

Verify the Installation
Verify the following components of your OAuth Tool Kit:

The test clients are used to verify installation changes and to access secured API endpoints of platforms.

Note the following security precautions when using the test clients:

 90

 CA API Management OAuth Toolkit 4.3

• Do not install the test client on product systems.
• Do not install the test client on a Gateway that is available on the Internet.
• Modify the test client to use your own specific client credentials.
• Remove the test client from the OAuth Manager when it is no longer needed.

Set the Callback URL for Test Clients

This task is required if you want to use test clients to verify the installation. It is recommended you perform this task.

To run the test clients, you must first configure the callback URL through the OAuth Manager.

Set the callback URL for each of the following test clients:

• OAuth2Client
• OpenID Connect Basic Client Profile
• OpenID Connect Implicit Client Profile

The name of the client appears in the third column from the left.

To set the callback URL:

1. In a browser, open the OAuth Manager by navigating to the following URL: https://<hostname>:8443/<iModifier>/
oauth/manager

2. Log in with an administrator account.
3. Click Clients.
4. Locate the test client you want to use. For example, OAuth2Client.

5. At the far right of the table row, click List Keys.
The List Client Keys page appears.

6. For the selected client, at the far right of the table row, click Edit. You may need to scroll horizontally to access the
button.
The Edit Client Key page appears.

7. Replace the Callback URL value with the protocol, hostname, port, and optional instance modifier of your gateway.
There are two URLs to edit.

8. Is the auth=done key value pair at the end of both URLs? If not, add it.
In the following Callback URL example, server2 is the instance modifier and myGateway.com is the hostname.
https://myGateway.com:8443/server2/oauth/v2/client/authcode?auth=done,https://
myGateway.com:8443/server2/oauth/v2/client/implicit?auth=done

9. Click Save.
10. Click Clients to return to the client list.

Repeat this task for any of the other test clients you intend to use.

NOTE

When you click Clients, no clients are listed? The most common reasons are:

No clients are registered for the username. To see the test clients, sign in as a user with the administrator role.

 91

http://myGateway.com
https://myGateway.com:8443/server2/oauth/v2/client/authcode?auth=done,https://myGateway.com:8443/server2/oauth/v2/client/implicit?auth=done
https://myGateway.com:8443/server2/oauth/v2/client/authcode?auth=done,https://myGateway.com:8443/server2/oauth/v2/client/implicit?auth=done

 CA API Management OAuth Toolkit 4.3

The OTK is integrated with the CA API Portal. In this case, clients are managed in the API Portal, not the OAuth
Manager. For more information, see Manage API Keys with CA API Portal.

Run the OAuth 2.0 Test Client
The test client is used to verify installation changes and to access OAuth 2.0-secured API endpoints of platforms. This
section describes how it works and how it can be configured.

Run the Client

Have you set the callback URL for the test client? See Post-Installation Tasks.

WARNING

Note the following security precautions when using the test client:

• – Do not install the test client on production systems.
– Do not install the test client on a Gateway that is available on the Internet.
– Modify the test client to use your own specific client credentials.
– Remove the test client from the OAuth Manager when it is no longer needed.

To run the OAuth 2.0 test client:

1. Navigate to the following URL in a browser:
https://<Gateway_host>:8443/<InstanceModifier>/oauth/v2/client
The OAuth Client Test Application screen is displayed.

2. Navigate between the other OAuth 2.0 Test Clients:
3. • Authorization Code

• Implicit
• Resource Owner Password Credentials
• Client Credentials
• SAML Bearer

Each OAuth 2.0 Test Client tests its own grant type. If you are only using a subset of the available OAuth grant types, you
can ignore the other test clients.

Each client app maintains its own token. Each time you initiate a new OAuth session, the current access token is
overwritten.

The access token in memory is used to call the test API. In the case of SAML, a SAML token is also maintained in
memory and overwritten each time you initiate a new one.

 92

 CA API Management OAuth Toolkit 4.3

Get an Access Token

To get an access token before calling an API:

1. Click the OAuth V2 Clients on the top bar.
2. Click any of the test clients identified by grant type on the black bar.
3. Click Initiate.

The OAuth 2.0 Authorization Server login page is displayed. (The Resource Owner Password Credentials client
requires this step before clicking Initiate).

4. Enter your credentials.

 93

 CA API Management OAuth Toolkit 4.3

NOTE

Log in with social login credentials is only available for clients when CA Mobile API Gateway is installed.

The authorization page appears displaying the requested scope. You are asked to Grant or Deny the request.

5. Click Grant.

You are redirected back to the client application with an access token and a refresh token.

Note that this information is for testing purposes only and should never be displayed in a user-agent.

 94

 CA API Management OAuth Toolkit 4.3

Use the Access Token to Call an API

To test use the access token to call an API on the CA API Gateway:

1. Click Call API. The client app will use the access token currently residing in memory as a credential to call the target
API.

2. View the response for this call below the Target field.

Refresh a Token

Certain grant types support refresh tokens. This is indicated by the presence of a Refresh button.

To refresh an existing OAuth access token, click the Refresh button.

The current access token information changes and a note indicates the access token was refreshed.

Clear the Current Session

Click the Clear Session button on the OAuth client page. This starts a new test and clears all the parameters in the
clients.

Verify the OAuth Infrastructure
The following instructions are for OAuth 2.0 installations only.

Use the OAuth Manager tool to verify the OAuth infrastructure using the OpenID Connect Test Client to request an OAuth
2.0 access_token, refresh_token and an OpenID Connect id_token.

1. Navigate to https://<your-ssg>:8443/<Prefix>/oauth/v2/client/bcp
The browser displays a simple OpenID Connect test client using response_type=code.

2. Scroll to the bottom of the page and click Send.
The OAuth 2.0 Authorization Server login page appears.

3. Enter admin credentials and click Login.
The grant page appears with the client scope permissions. For example: phone email address profile openid.

 95

 CA API Management OAuth Toolkit 4.3

4. Verify that the scope values do not include "oob".
If "oob" is listed as a scope type, restart the CA API Gateway then restart this verification procedure.

5. Click Grant.
Information about the request is displayed.

6. Click either the Resources or Claims buttons.
A JSON message is displayed as shown below:

Userinfo Endpoint Customization

In the OTK Client Context Variables policy, the path_userinfoendpoint context variable is set to: /openid/connect/
v1/userinfo.

Together, the host_oauth2_auth_server and path_userinfoendpoint create the full userinfo endpoint:
location_userinfoendpoint.

To customize the userinfo endpoint:

1. Open the OTK Client Context Variables policy.
2. Copy the Set Context Variable ${path_userinfoendpoint}.
3. Open the #OTK Client Context Variables policy. Find this policy in the Customizations folder.
4. Paste the assertion.
5. Double-click the assertion and provide a new endpoint.

If you need to modify the server details specifically for the custom userinfo endpoint, copy the Set Context Variable
${host_oauth2_auth_server} and perform the same tasks.

 96

 CA API Management OAuth Toolkit 4.3

Troubleshooting
This topic provides troubleshooting assistance for common issues. For additional assistance, visit CA Support.

JDBC Connection Failures

My JDBC connection to the database is failing because the server thinks it is under a DDOS attack due to a sudden surge
of connections.

 Solution: Use the recommended configuration below:

• Ensure that the following JDBC Cluster Properties are set to the same value:
 jdbcConnection.pooling.maxPoolSize.defaultValue
jdbcConnection.pooling.minPoolSize.defaultValue

• Set the following Additional Properties for the JDBC connection:
– Property Name: maxIdleTime

Property Value: 0
To set a C3P0 pooling property: selected

– Property Name: maxConnectionAge
Property Value: 0
To set a C3P0 pooling property: selected

– Property Name: idleConnectionTestPeriod
Property Value: 600
To set a C3P0 pooling property: selected

– Property Name: EnableCancelTimeout
Property Value: true
To set a C3P0 pooling property: selected

• If an Oracle DB is in use, also set this Additional Property:
– Property Name: preferredTestQuery

Property Value: "select 1 from dual" (enter the entire value, including the quotation characters)
To set a C3P0 pooling property: selected

Deleting OAuth Policy Creates Dependency Errors

When I deleted an OAuth policy, it resulted in many "dependency" errors that needed to be acknowledged one at a time.
How can I avoid this?

 Solution: This is a result of the Policy Manager's validation checks: it is warning you that you are removing a policy
fragment that is currently serving as a backing policy for an encapsulated assertion. To avoid having to acknowledge each
dependency error, first delete all the encapsulated assertions related to the OAuth Toolkit.

You can do this by using the Manage Encapsulated Assertion task. See API Gateway documentation. Advanced users
can also avoid these errors by deleting the OAuth folder using the RESTMan Service. (SSM-5068).

 97

https://support.ca.com/
https://techdocs.broadcom.com

 CA API Management OAuth Toolkit 4.3

Upgrade the OTK
These upgrade instructions assume that you have an existing CA API Management OAuth Toolkit (OTK) installation.

To upgrade the OTK:

Before you Begin

WARNING
 After you upgrade, restart the Gateway. See Post-Installation Tasks for more information.

Be aware of the following behavior:

• Verify that the CA API Gateway has been updated to a version that supports the target OAuth Toolkit version. Refer to
the Product Compatibility and Support section of the Release Notes.

• The solution kit manager does not check the version of the upgrade. Verify that you are upgrading to a version later
than the one currently installed. Unpredictable results occur if you upgrade to an older version.

• Policies with the Customizations folder are not replaced during an upgrade. Your custom configuration remains intact.
• The Upgrade button is only functional when upgrading 4.x to later versions. It cannot be used to upgrade versions 3.x.

To upgrade versions 3.x, perform an Install. See Install the OAuth Solution Kit.
• To keep the previous version as a reference, install the OTK using an instance modifier.
• If you are upgrading OTK solution kits that already have an instance modifier, the same instance modifier is

automatically applied to the upgraded version.
• A TimeoutRuntimeException can occur if you do not have enough RAM to perform the upgrade. Minimum memory

for OTK should be at least 4 GB. If you have multiple instances of the OTK or other solution kits installed, we suggest
minimum of 8 GB for the CA API Gateway RAM.

WARNING

 If the TimeoutRuntimeException occurs, OTK might get into a non-removable and non-upgradable state.
To restore the system, you will need to clean up OTK and the rest of the solution kits through Gateway
Database.

Unable to upgrade solution kit: Could not access HTTP invoker remote service...

...TimeoutRuntimeException: Read timed out

How are Solution Kits Upgraded?

When you select a product solution kit such as OTKSolutionKit and click Upgrade, the list of solution kits within the
product solution kit appear for selection.

When you select solution kits for upgrade, expect the following behavior:

• If the selected solution kit was previously installed, the solution kit is upgraded.
• If the selected solution kit was not previously installed, the solution kits is installed.
• Previously installed solution kits that are not selected for Upgrade are uninstalled.

For example, if you had the Shared Portal Resources solution kit installed in OTK 4.2 and do not select Shared Portal
Resources during the upgrade to OTK 4.3, the Shared Portal Resources solution kit is uninstalled.

How Are Services Upgraded?

Services are replaced with new versions during an upgrade. However, your service revision history remains intact,
allowing you to compare versions and make edits.

 98

 CA API Management OAuth Toolkit 4.3

WARNING

 If you are an API Management SaaS customer, any changes you made to OTK Services endpoints are
overwritten after the automatic upgrade. OTK will be upgraded automatically when a new release is available.

To view the history of a service and compare revisions:

1. Select the service.
2. Right-click and select Revision History.
3. In the Policy Revisions dialog, select the active version. The Active version of the service is indicated with *.
4. Click the Compare Policy button.
5. Select the previous version of the service.
6. Click the Compare Policy button.

A window appears showing you the modifications.

NOTE

 No history is maintained for OAuth 1.0 services. OAuth 1.0 is deprecated. Services are replaced by an
upgrade.

Upgrade from OTK Version 4.x

You can upgrade from OTK version 4.x directly to any later version. For example, you can upgrade from OTK 4.1 to OTK
4.3, without having to upgrade to OTK 4.2. If you are upgrading from OTK version 4.0, you must first run a compatibility
patch. This procedure is described in the instructions.

To upgrade from OTK version 4.x to a later version, perform the upgrade tasks in the following order:

Upgrade the OTK Database

To upgrade an existing OTK database to a later version:

1. Download the database update scripts found on Supporting Files.
To upgrade an existing database, start with the script corresponding to your current OTK version, then work up the list,
executing all scripts until you reach the latest version.

2. Follow the upgrade instructions for your database type.
See Create or Upgrade the OTK Database

Run the Upgrade Compatibility Patch (OTK 4.0.x only)

The upgrade compatibility patch is required only if you are upgrading from OTK 4.0.x. This patch is not required when
upgrading from later versions of the OTK. The patch is available on Supporting Files.

To run the upgrade compatibility patch:

1. Open a privileged shell on the CA API Gateway. The upgrade compatibility patch is run against the CA API Gateway
database.

2. Copy the otk_upgrade_compatibility_4.0.sh script to the CA API Gateway.
3. On the Gateway, run the following command:

./otk_upgrade_compatibility_4.0.sh

4. Answer the following prompts by providing CA API Gateway database details:
a. Enter the database hostname
b. Enter the database port
c. Enter the database name
d. Enter the database user

 99

 CA API Management OAuth Toolkit 4.3

e. Enter the database password
5. Restart the Gateway using the following command:

service ssg restart

Upgrade the OAuth Solution Kits

Before upgrading, see How are Solution Kits Upgraded?

To upgrade the OAuth Solution Kit:

1. In the Policy Manager, go to Tasks, Extensions and Add-Ons, Manage Solution Kits.
The list of installed solution kits appears.

2. Click to highlight the existing OAuthSolutionKit.

3. Click Upgrade.
4. Select the new OAuthSolutionKit.sskar file.
5. Click Next.

The solution kits within the sskar file appear.
6. Select the solution kits to upgrade or install.

For details on how the upgrade affects existing solution kits, see the Solution Kit Upgrade Behavior note at the
beginning of this section

7. Click Next.
8. Resolve any entity conflicts and click Finish.

Upgrade from OTK version 3.x

The Upgrade button in the solution kit manager is not functional for these versions. You must perform an Install.

To install the latest version and keep the older version as a reference for merging custom configuration:

1. Run the database upgrade scripts.
2. Install version 4.x through the solution kit manager using an instance modifier.
3. Merge any custom configuration into the new #policies and extensions found in the Customizations folder.

To install the latest version without keeping the older version:

1. Run the database upgrade scripts.
2. Manually Uninstall OTK 3.x, remove any remaining empty folders. See the "Uninstall Installations Prior to OTK

Version 3.2" section of Uninstall the OTK.
3. After the old version is removed, including any empty folders, install the latest OTK 4.x version. Configuration must be

manually performed in the OTK 4.x version.

Upgrade with RESTman instead of the Solution Kit Installer

The Solution Kit Manager accessed through the Policy Manager provides a convenient interface for installing and
removing solution kits.

 100

 CA API Management OAuth Toolkit 4.3

Alternatively, if you have the REST Management Service (RESTman) running on the CA API Gateway, you can access
the REST Management API and run a script to upgrade the OTK. For more information, see the REST Management API
documentation on the CA API Gateway site.

Download the upgrade scripts from Download OTK Installation Files.

NOTE

Currently, the only upgrade script available is: upgrade-to-otk4.3.1.sh

The script will throw errors if the following requirements are not met:

• Restman must be installed.
• mySQL and curl must be installed
• The following files must be in the same directory as the upgrade-to-otkversion.sh script:

- OTK database upgrade script
- OTK sskar file

To upgrade OTK using the REST Management Service, run the upgrade script with the required variables. Optional
variables are also available.

The following example uses the upgrade-to-otk4.3.1.sh script:

./upgrade-to-otk4.3.1.sh -l <gateway_with_port> -u <restman_user> -p <restman_password>
 -o <otk_db_host> -a <otk_db_password>

Required Variables Notes

-l <gateway_with_port> The host address of the Gateway. For example:
myGateway.com:8443

-u <restman_user> The username to access RESTman

-p <restman_password> The password to access RESTman

-o <otk_db_host> The name of the OTK database.
Default value: otk_db

-a <otk_db_password> The OTK database password.

The following additional variables for the script are optional.

Optional Variables Notes

-j <oauth_jdbc_connection_name> The OAuth JDBC connection name to the database.
Default value: OAuth.

-s <path_to_oauth_skar> The absolute path to the sskar file. Default value:
OAuthSolutionKit.sskar.

-e <otk_db_user> The database user. Default value: otk_user

-n <otk_db_name> The database name. Default value: otk_db

-r <otk_db_port> The database port. Default value: 3306

Perform Post-Installation Tasks

 Post-installation tasks include restarting the Gateway to make sure your upgrade modifications take effect.

 101

https://techdocs.broadcom.com
https://techdocs.broadcom.com

 CA API Management OAuth Toolkit 4.3

Uninstall the OTK
The uninstall procedure performed through the solution kit manager removes installed solution kits and their associated
policies.

Clicking the Uninstall button does not remove the following:

• Policies inside the Customizations folder
• Customizable policies in the Policy Fragments folder
• OAuth 2.0 Services
• The OTK v2GenerateRequestMac policy
• The V2GenerateAuthHeaderForClient policy

OAuth 1.0 Services are removed.

The policies inside the Customizations folder include any custom configuration. To completely uninstall the OTK, manually
delete the customizations folder, Policy Fragments folder, and Server folder.

To uninstall the OTK, select one of the following tasks:

Uninstall Previously Installed Solution Kits

The Solution Kit manager allows you to uninstall the entire OTK Solution kit, or individual solution kits within the parent
solution kit.

To uninstall solution kits:

1. Go to Tasks, Extensions and Add-Ons, Manage Solution Kits.
2. Click to select the component you want to uninstall. If you want to remove the entire OTK, select the top level OTK

Solution Kit.
3. Click Uninstall and confirm.
4. Click OK when the task is completed.

The uninstall process leaves empty folders in the policy manager.

To remove the empty folders:

1. In Policy Manager, locate the root folder that you want to uninstall.
2. Right-click the folder in policy manager and select Delete Folder.
3. Click the check box to activate the OK button, then click OK.

Any empty sub-folders are also deleted.

Uninstall Non Solution Kit Installations of the OTK

OTK versions prior to OTK version 3.2 were not installed using the solution kit installer. Subsequently, uninstalling the
OAuth Toolkit is a manual task.

To uninstall OTK versions that were not installed as solution kits :

1. Login into Policy Manager as an administrator.
2. Select the main OAuth folder.
3. Right-click and select Delete Folder.
4. Click the check box to activate the OK button, then click OK.

If the folder is not deleted, delete components within the folder first, then delete the empty OTK folders.

 102

 CA API Management OAuth Toolkit 4.3

Prepare JSON Message for Export
Exporting the current OAuth configuration in JSON format provides convenient policy-driven setting of attributes for
communication between the CA API Gateway and the OAuth Client. The exported JSON message provides a snapshot
of the values assigned to context variables. See JSON Message Example. It also includes endpoint paths and certificate
information.

Configuration is exported for a specific client id.

Include the OAuth Server Certificate in the JSON Message

The OAuth server certificate is the SSL certificate on the authorization server. The SSL certificate name must match
the oauth2_server_certificate variable value in the policy used to create the JSON message.

By default, the certificate name is set to the localhost: ${gateway.cluster.hostname}. If your SSL certificate has an
alternate name, provide custom configuration in the #OTK Variable Configuration policy.

 To include the OAuth Server Certificate:

1. Determine your SSL certificate name. Go to Tasks, Certificates, Keys and Secrets, Manage Certificates. Copy the
Certificate Name value of the SSL certificate.

2. Is your certificate name the same as your localhost? If so, no additional customization is required. Otherwise, continue
to step 3.

3. Open the OTK Variable Configuration policy.
4. Copy the Set Context Variable oauth2_server_certificate assertion.
5. Open the #OTK Variable Configuration policy and paste the assertion.
6. Double-click the assertion and assign the certificate name value to the oauth2_server_certificate variable.

The name used in the JSON content variable must match the alias of the certificate.

Assign Custom OAuth Server Configuration

To assign OAuth server configuration:

1. Open the OTK Variable Configuration policy.
2. Locate the Export section.

Copy any of the following Set Context Variable assertions that you want to modify.
Paste them into the #OTK Variable Configuration policy, and provide custom values.

Context Variable Notes

oauth2_server_hostname Hostname of the OAuth server
Default setting: ${gateway.cluster.hostname}

oauth2_server_certificate OAuth server certificate name
This name must match the assigned Certificate Name value found
in Tasks, Certificates, Keys and Secrets, Manage Certificates.
Default setting: ${gateway.cluster.hostname}

oauth2_server_port The port of the OAuth server where OAuth clients connect
Default setting: 8443

 103

 CA API Management OAuth Toolkit 4.3

Context Variable Notes

oauth2_server_url_prefix Prefix of the OAuth server.
The instance modifier if used.

expose_client_secret Boolean
Default: false
If true, the client secret is included in the exported JSON
message

enable_anonymous_client_export Boolean
Default: false.
If true, the endpoint allows access to users without authentication.
See Allow Anonymous Access to the JSON Export Endpoint.

export_custom A variable used to pass any further information. By default, this
variable passes the following endpoint paths:
"oauth_demo_protected_api_endpoint_path":"/oauth/v2/
protectedapi/foo"
"mag_demo_products_endpoint_path":"/protected/resource/
products"

Enable the Export Endpoint

The endpoint that provides configuration values in JSON format is located in the OAuth/DMZ/OAuth 2.0 folder:

 /auth/oauth/v2/client/export

By default this endpoint is disabled. The preferred method of exporting the JSON file is through the Export button in OAuth
Manager. You do not need to enable this endpoint to export the JSON file through OAuth Manager.

 To enable the export endpoint:

1. Locate the /auth/oauth/v2/client/export endpoint. By default, this is located in Server/DMZ/OAuth 2.0/TokenServer
2. Right-click the endpoint, and select Service Properties.
3. Select Enable and click OK.

Allow Anonymous Access to the JSON Export Endpoint

By default the JSON export endpoint allows access to users authenticated using HTTP Basic Authentication only.

To allow anonymous access to the JSON export endpoint:

1. Open the OTK Variable Configuration policy.
2. Copy the Set Context Variable enable_anonymous_client_export Context Variable.
3. Open the #OTK Variable Configuration policy and paste the assertion.
4. Modify the value to true.

Both authorized and anonymous users require a secure SSL connection to access the endpoint.

JSON Message Example
The JSON message contains the current server configuration values used to initialize the SDK for a client. The message
comprises four sections:

 104

 CA API Management OAuth Toolkit 4.3

Server

The server section contains server details and the SSL certificate required to establish communication between the SDK
and the MAG. It also contains the OAuth server SSL certificate information in the server_certs attribute. The name of the
certificate is identified in the OTK Variable Configuration policy. See Prepare JSON Message for Export.

"server": {
 "hostname": "example.com",
 "port": 8443,
 "prefix": "myPrefix",
 "server_certs": [
 [
 "-----BEGIN CERTIFICATE-----",
"MIIC9TCCA...","bi5...","aW4....",
"-----END CERTIFICATE-----"
]
]
 }

MAG

MAG and the OAuth Manager Extension must be installed for the Mobile API Gateway section to be included in the JSON
configuration file.

"mag": { "system_endpoints":
 { "device_register_endpoint_path": "/connect/device/register",
 "device_remove_endpoint_path": "/connect/device/remove",
 "client_credential_init_endpoint_path": "/connect/client/initialize" },
 "oauth_protected_endpoints":
 { "enterprise_browser_endpoint_path": "/connect/enterprise/browser",
 "device_list_endpoint_path": "/connect/device/list" },
 "mobile_sdk":
 { "sso_enabled": true,
 "location_enabled": true,
 "location_provider": "network",
 "msisdn_enabled": true,
 "trusted_public_pki":true,
 "trusted_cert_pinned_public_key_hashes": [],
 "client_cert_rsa_keybits" : 1024
 }

No explicit configuration of server variables for export is required. However, you can override existing values by editing the
MAG Variable Configuration policy found in /Policy Fragments/configuration.

Exported Attributes Description Type

device_register_endpoint_path URL suffix for device registration String
device_remove_endpoint_path URL suffix for token server's

remove_device_x509 endpoint
String

 105

 CA API Management OAuth Toolkit 4.3

Exported Attributes Description Type

client_credential_init_endpoint_path URL Suffix for initialize client credential
endpoint

String

enterprise_browser_endpoint_path URL suffix for server's enterprise apps
endpoint.

String

device_list_endpoint_path URL suffix for device list String
sso_enabled Indicates whether single sign on is allowed

for this app.
Boolean

location_enabled Indicates whether location information is
allowed in outbound requests

Boolean

location_provider The location provider to use if location is
enabled

String

msisdn_enabled MSISDN information should be included in
the outbound requests

Boolean

trusted_public_pki Indicates whether public CAs recognized
by the OS are accepted as TLS server
certificates in addition to the list returned by
server_certs

Boolean

trusted_cert_pinned_public_key_hashes Controls whether TLS server certificate
public key pinning is in use and, if so, what
pinned public key hashes to permit within
server cert chains

JSON Array of JSON Array of String

client_cert_rsa_keybits The size in bits of the RSA keypair to
generate for the client certificate

Number

OAuth

For the OAuth section to be included in the JSON configuration file, OAuth Manager must be installed.

"oauth": {
 "client": {
 "organization": "CA Technologies",
 "description": "Example application for Mobile SSO demonstrations",
 "client_name": "AppA",
 "client_type": "confidential",
 "registered_by": "admin",
 "client_ids": [

 {
 "client_id": "12341234b4f-aaaa-aaab-aaab-123412345377a",
 "client_secret": "abababa25-1239-1232-1232-12345678999a",
 "scope": "openid msso phone profile address email msso_register",
 "redirect_uri": "https://android.ssosdk.ca.com/android",
 "environment": "Android",
 "status": "ENABLED",
 "registered_by": "admin"
 "service_ids": "",
 "account_plan_mapping_ids": "",
 "client_key_custom": "{}"

 106

 CA API Management OAuth Toolkit 4.3

 }
]
 },
 "system_endpoints": {
 "authorization_endpoint_path": "/auth/oauth/v2/authorize",
 "token_endpoint_path": "/auth/oauth/v2/token",
 "token_revocation_endpoint_path": "/auth/oauth/v2/token/revoke",
 "usersession_logout_endpoint_path": "/connect/session/logout"
 "usersession_status_endpoint_path": "/connect/session/status"
 },
 "oauth_protected_endpoints": {
 "userinfo_endpoint_path": "/openid/connect/v1/userinfo",
 "usersession_status_endpoint_path": "/connect/session/status"
 }

You are required to configure certain variables in the #OTK Variable Configuration policy. See Prepare JSON Message
for Export.

Open the #OTK Variable Configuration policy found in the OAuth/Policy Fragments/configuration/ to further customize
values for the JSON message.

Exported Attributes Description Type

organization The organization name to include in the
client cert DN

String

description App description String
name Client name String
type Client type String
registered_by User who registered the client String
client_ids List of client ids, only the first client_id will

be used by the SDK and the rest will be
ignored by the SDK

JSON Array

client_id The application's client id for the initial
OAuth token request

String

client_secret The application's client secret for the initial
OAuth token request

String

scope The OAuth scope string that should be
requested when obtaining an access token
that will be used to consume service from
an API endpoint

String

redirect_uri The redirect URI provided to the third-party-
login platform.

String

environment The environment of the client String
status Status of the client String
registered_by User who registered the client String
authorization_endpoint_path System endpoint for authorization String
token_endpoint_path System endpoint to acquire token String
token_revocation_endpoint_path System endpoint to revoke token String

 107

 CA API Management OAuth Toolkit 4.3

Exported Attributes Description Type

usersession_logout_endpoint_path System endpoint to perform logout user
session

String

userinfo_endpoint_path Endpoint to retrieve user info String
usersession_status_endpoint_path Endpoint to check user session status String

Custom

The custom section allows you add add additional attributes to pass values to the SDK.

 "custom": {
 "oauth_demo_protected_api_endpoint_path":"/oauth/v2/protectedapi/foo",
 "mag_demo_products_endpoint_path":"/protected/resource/products"
 }

To add new attributes to the Custom section of the JSON content, set the export_custom variable value in the #OAuth
Variable Configuration policy.

 108

 CA API Management OAuth Toolkit 4.3

Secure an API Endpoint with OAuth 2.0
Use the OTK Require OAuth 2.0 Token encapsulated assertion to secure an API endpoint.

NOTE

OAuth 1.0 is no longer supported.

OTK Require OAuth 2.0 Token

Use the OTK Require OAuth 2.0 Token encapsulated assertion to allow access to an API only when a valid OAuth 2.0
access_token is presented by the client.

This assertion includes the OTK Access Token Retrieval assertion to locate the incoming OAuth 2.0 access_token.

Place the assertion as early as possible in an API policy.

Drag the assertion into a policy and configure the properties shown in the table below.

Properties Parameter Name Type Notes
Required SCOPE(s) scope_required String If SCOPE is not required, this

value can be empty.
A space separated list
of required SCOPEs. An
access_token is only accepted
if it has been granted with those
SCOPE values.

 109

 CA API Management OAuth Toolkit 4.3

Cache validation result (s) cache_lifetime Integer This value cannot be empty.
Represents the time in seconds
for which an access_token is
cached. The assertion initially
validates an access_token.
The validation result is then
cached until the cache period
expires. This increases
performance, but also enables
clients to use potentially
expired access_tokens. The
cache_lifetime value extends
the lifetime of the token. A value
of 0 indicates no caching is
performed.

Is this a one-time access-
token?

onetime Boolean Default value: false.
To allow an access_token to
be considered valid only once
for this endpoint, set this value
to true. This setting is rare, but
enables special use cases.

Fail if this SCOPE was
granted?

scope_fail Boolean Default value: false.
Set this value to “true” if a
request should fail in the case
that an access_token has been
granted for at least one the
specified SCOPE values listed
above

Access Token given_access_token String Optional. The hardcoded
value of an access token or a
context variable representing
an access_token. Use this
property if an access_token is
made available, but not by the
client, or if the access_token is
passed using a non-standard
mechanism.

 110

 CA API Management OAuth Toolkit 4.3

OAuth Request Scenarios
The following scenarios examine OAuth 2.0 client requests for an access_token.

Response Type

The client request includes a response_type.

response_type Notes

token Only use the token response_type if an exposed access_token is
not an issue. Clients using this response_type are considered to
be public clients and do not receive a refresh_token. This type of
client may be implemented in JavaScript.

token id_token Only use the token id_token response type in conjunction with
scope=openid. This response_type is used with OpenID Connect.

code The code response_type is the most secure with regards to
visibility of issued tokens. The flow involves multiple steps that
are required between sending the initial request to receiving an
access_token.
If the user grants the client access, the client receives an
authorization code attached to the redirect_uri. The client can
then exchange the authorization_code for an access_token using
grant_type=authorization_code.

Details:

response_type=token

The 'token' response_type can be used when the client should not have access to user credentials. It includes a redirect
that involves a browser or a web view on a mobile device. Using the token response_type is not secure. It should be used
only if an exposed access_token is not an issue. Clients using this response_type are considered to be 'public' clients and
do not receive a refresh_token. This type of client may be implemented in JavaScript.

Request Notes

Method: GET
Endpoint: /auth/oauth/v2/authorize
Parameters: response_type=token&client_id=a-client_id&redirect_uri=a-redirec

t_uri&scope=a-list-of-scope-values&state=a-state-value
Optional: redirect_uri: If provided only requests using a registered

redirect_uri of this client will be granted by the OAuth server. If the
parameter is not included the OAuth server will use the registered
redirect_uri. If multiple redirect_uris have been registered the
request will fail. At least one redirect_uri MUST have been
registered!

Optional: scope: Only SCOPE values that have been registered for the
client will be granted by the OAuth server

Optional: state: This value is opaque to the OAuth server and will be
passed back unmodified to the client

 111

 CA API Management OAuth Toolkit 4.3

Response Notes

Header: status: 200
Header: content-type: text/html
Body: The user-agent will receive a login page. This page will request

user credentials and the consent of the user. If the user denies the
request the client will receive an error. If the user grants the client
it will receive the access_token attached to the redirect_uri

Next: The OAuth server will redirect the user-agent back to the client:
Header: 302
Header: Location: the-redirect-uri?state=the-given-

state#access_token=an-access_token&expires_in=lifetime-in-
seconds&token_type=Bearer&scope=granted-scope

The receiving user-agent (browser, JavaScript client) can now extract the parameters from the redirect_uri fragment
portion. The fragment value will only be available in the browser.

response_type=token id_token

The 'token id_token' response_type can be used when the client should not have access to user credentials. It includes a
redirect that involves a browser or a web view on a mobile device. Using the token response_type is not secure. It should
be used only if an exposed access_token is not an issue. Clients using this response_type are considered to be 'public'
clients and do not receive a refresh_token. This type of client may be implemented in JavaScript.

Request Notes

Method: GET
Endpoint: /auth/oauth/v2/authorize
Parameters: response_type=token%20id_token&client_id=a-

client_id&redirect_uri=a-redirect_uri&state=a-state-
value&scope=a-list-of-scope-values (SCOPE MUST be included
and it MUST include 'openid')

Optional: redirect_uri: If provided only requests using a registered
redirect_uri of this client will be granted by the OAuth server. If the
parameter is not included the OAuth server will use the registered
redirect_uri. If multiple redirect_uris have been registered the
request will fail. At least one redirect_uri MUST have been
registered!

Optional: state: This value is opaque to the OAuth server and will be
passed back unmodified to the client

Response Notes

Header: status: 200
Header: content-type: text/html
Body: The user-agent will receive a login page. This page will request

user credentials and the consent of the user. If the user denies the
request the client will receive an error. If the user grants the client
it will receive the access_token attached to the redirect_uri

 112

 CA API Management OAuth Toolkit 4.3

Response Notes

Next: The OAuth server will redirect the user-agent back to the client:
Header: 302
Header: Location: the-redirect-uri?state=the-given-

state#access_token=an-access_token&expires_in=lifetime-
in-seconds&token_type=Bearer&scope=granted-
scope&id_token=an-id-token-represented-as-
jwt&id_token_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-
type%3Ajwt-bearer

The receiving user-agent (browser, JavaScript client) can now extract the parameters from the redirect_uri fragment
portion. The fragment value will only be available in the browser.

response_type=code

This is the safer response_type to use because it is the most secure with regards to visibility of issued tokens. The flow
involves multiple steps that are required between sending the initial request to receiving an access_token

A client is requesting an access_token using response_type=code. This response_type can be used if the client should
not have access to user credentials. This response_type includes a redirect that involves a browser or a web view on a
mobile device.

Request Notes

Method: GET
Endpoint: /auth/oauth/v2/authorize
Parameters: response_type=code&client_id=a-client_id&redirect_uri=a-redirect

_uri&scope=a-list-of-scope-values&state=a-state-value
Optional: redirect_uri: If provided only requests using a registered

redirect_uri of this client will be granted by the OAuth server.
If the parameter is not included the OAuth server will use the
registered redirect_uri. If multiple redirect_uris have been
registered the request will fail. If a redirect_uri is included and
none was registered the OAuth server will use the one included in
the request

Optional: scope: Only SCOPE values that have been registered for the
client will be granted by the OAuth server

Optional: state: This value is opaque to the OAuth server and will be
passed back unmodified to the client

Response Notes

Header: status: 200
Header: content-type: text/html
Body: The user-agent will receive a login page. This page will request

user credentials and the consent of the user. If the user denies the
request the client will receive an error. If the user grants the client
it will receive an authorization code attached to the redirect_uri

Next: The OAuth server will redirect the user-agent back to the client:
Header: 302

 113

 CA API Management OAuth Toolkit 4.3

Response Notes

Header: Location: the-redirect-uri?code=an-authorization-code&state=the-
given-state

The receiving client can now extract the code (authorization_code) from the redirect_uri and exchange it for an
access_token (using grant_type=authorization_code).

Grant Types

The following scenarios describe the different grant types used to request an access_token.

grant_type Notes

password Used if the client was built by the enterprise that also implements
the OAuth token server.

authorization_code Exchange the authorization_code for an access_token. A client
has received the authorization_code attached to a redirect
URI. The client now exchanges the authorization_code for an
access_token by using grant_type 'authorization_code'.
If the client included 'openid' as SCOPE in his request, additional
keys are included in the response:
..."id_token":"eyJ0eXAiO1v8 ... JZu_LsN851VtfC5pcIqJc",
"id_token_type":"urn:ietf:params:oauth:grant-type:jwt-bearer" ...
The id_token (JWT) can be used with
grant_type=urn:ietf:params:oauth:grant-type:jwt-bearer.

urn:ietf:params:oauth:grant-type:jwt-bearer Used if the client has an id_token (represented as JWT) of an
authenticated user. Only id_tokens issued by the OAuth server are
accepted.

urn:ietf:params:oauth:grant-type:saml2-bearer This grant_type can be used if the client is in possession of a
SAML 2.0 token of an authenticated user. This scenario is useful
in cases of federation where the SAML 2.0 token was signed by a
trusted party.

refresh_token This grant_type can be used if the client is in possession of
a refresh_token. The request will only be successful if the
refresh_token has not expired. The parameter 'SCOPE' can
only include the same or a subset of values that were originally
requested.
By default a refresh_token can be used only once.

Details:

grant_type=password

This grant_type can be used if the client was built by the enterprise that also implements the OAuth token server.

Request Notes

Method: POST
Header: content-type: application/x-www-form-urlencoded
Header: authorization: Basic base64(client_id:client_secret) (This header

can only be used if 'client_id' and 'client_secret' are NOT found
within the message body and vice versa!)

Endpoint: /auth/oauth/v2/token

 114

 CA API Management OAuth Toolkit 4.3

Request Notes

Parameters: grant_type=password&username=a-username&password=a-user
s-password&client_id=a-client_id&client_secret=a-client_secret&s
cope=a-list-of-scope-values

Optional: scope: Only SCOPE values that have been registered for the
client will be granted by the OAuth server

Response Notes

Header: status: 200
Header: content-type: application/json
Body: Example: { "access_token":"115b8c ... 11a5",

"token_type":"Bearer", "expires_in":3600,
"refresh_token":"74b29d19-8b ... 7bb6bd1", "scope":"openid
email" }

grant_type=client_credentials

This grant_type can be used if the client is acting on its own behalf. No user consent is required.

Request Notes

Method: POST
Header: content-type: application/x-www-form-urlencoded
Header: authorization: Basic base64(client_id:client_secret) (This header

can only be used if 'client_id' and 'client_secret' are NOT found
within the message body and vice versa!)

Endpoint: /auth/oauth/v2/token
Parameters: Parameters: grant_type=client_credentials&client_id=a-

client_id&client_secret=a-client_secret&scope=a-list-of-scope-
values

Optional: scope: Only SCOPE values that have been registered for the
client will be granted by the OAuth server

Response Notes

Header: status: 200
Header: content-type: application/json
Body: { "access_token":"115b8c ... 11a5", "token_type":"Bearer",

"expires_in":3600, "scope":"openid email" }

 115

 CA API Management OAuth Toolkit 4.3

grant_type=authorization code

Exchange the authorization_code for an access_token. A client has received the authorization_code attached to a redirect
URI. The client now exchanges the authorization_code for an access_token by using grant_type 'authorization_code'.

Request Notes

Method: POST
Header: content-type: application/x-www-form-urlencoded
Header: authorization: Basic base64(client_id:client_secret) (This header

can only be used if 'client_id' and 'client_secret' are NOT found
within the message body and vice versa!)

Endpoint: /auth/oauth/v2/token
Parameters: grant_type=authorization_code&code=the-received-authorization-

code&client_id=a-client_id&client_secret=a-client_secret&redirect
_uri

Optional: redirect_uri: The value has to be included if it has been used in
the initial request. It also has to match the original value

Response Notes

Header: status: 200
Header: content-type: application/json
Body: { "access_token":"115b8c ... 11a5", "token_type":"Bearer",

"expires_in":3600, "refresh_token":"74b29d19-8b ... 7bb6bd1",
"scope":"openid email" }

If the client included 'openid' as SCOPE in his request, additional keys are included in the response:

..."id_token":"eyJ0eXAiO1v8 ... JZu_LsN851VtfC5pcIqJc", "id_token_type":"urn:ietf:params:oauth:grant-type:jwt-bearer" ...

The id_token (JWT) can be used with grant_type=urn:ietf:params:oauth:grant-type:jwt-bearer.

grant_type=urn:ietf:params:oauth:grant-type:jwt-bearer

This grant_type can be used if the client is in possession of an id_token (represented as JWT) of an authenticated user.
Only id_token (JWT) that were issued by the OAuth server are accepted.

Request Notes

Method: POST
Header: content-type: application/x-www-form-urlencoded
Header: authorization: Basic base64(client_id:client_secret) (This header

can only be used if 'client_id' and 'client_secret' are NOT found
within the message body and vice versa!)

Endpoint: /auth/oauth/v2/token
Parameters: grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Aj

wt-bearer&assertion=a-jwt&client_id=a-client_id&client_secret=a-c
lient_secret&scope=a-list-of-scope-values

Optional: scope: Only SCOPE values that have been registered for the
client will be granted by the OAuth server

 116

 CA API Management OAuth Toolkit 4.3

Response Notes

Header: status: 200
Header: content-type: application/json
Body: { "access_token":"115b8c ... 11a5", "token_type":"Bearer",

"expires_in":3600, "refresh_token":"74b29d19-8b ... 7bb6bd1",
"scope":"openid email" }

grant_type=urn:ietf:params:oauth:grant-type:saml2-bearer

This grant_type can be used if the client is in possession of a SAML 2.0 token of an authenticated user. This scenario is
useful in cases of federation where the SAML 2.0 token was signed by a trusted party.

Request Notes

Method: POST
Header: content-type: application/x-www-form-urlencoded
Header: authorization: Basic base64(client_id:client_secret) (This header

can only be used if 'client_id' and 'client_secret' are NOT found
within the message body and vice versa!)

Endpoint: /auth/oauth/v2/token
Parameters: grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3A

saml2-bearer&assertion=a-base64-encoded-saml-token&client_id
=a-client_id&client_secret=a-client_secret&scope=a-list-of-scope-
values

Optional: scope: Only SCOPE values that have been registered for the
client will be granted by the OAuth server

Response Notes

Header: status: 200
Header: content-type: application/json
Body: { "access_token":"115b8c ... 11a5", "token_type":"Bearer",

"expires_in":3600, "scope":"openid email" }

grant_type=refresh_token

This grant_type can be used if the client is in possession of a refresh_token. The request will only be successful if the
refresh_token has not expired. The parameter 'SCOPE' can only include the same or a subset of values that were
originally requested. The refresh_token can only be use once.

Request Notes

Method: POST
Header: content-type: application/x-www-form-urlencoded
Header: authorization: Basic base64(client_id:client_secret) (This header

can only be used if 'client_id' and 'client_secret' are NOT found
within the message body and vice versa!)

Endpoint: /auth/oauth/v2/token

 117

 CA API Management OAuth Toolkit 4.3

Request Notes

Parameters: Parameters: grant_type=refresh_token&refresh_token=a-
refresh-token&client_id=a-client_id&client_secret=a-
client_secret&scope=a-list-of-scope-values

Optional: scope: Only SCOPE values that have been registered for the
client will be granted by the OAuth server

Response Notes

Header: status: 200
Header: content-type: application/json
Body: { "access_token":"115b8c ... 11a5", "token_type":"Bearer",

"expires_in":3600, "refresh_token":"74b29d19-8b ... 7bb6bd1",
"scope":"openid email" }

 118

 CA API Management OAuth Toolkit 4.3

Customizing the OAuth ToolKit
All OAuth Toolkit features are implemented using policies in the Policy Manager, making it possible to customize the entire
OAuth process.

Customizing Policies
All OAuth Toolkit features are implemented using policies in the Policy Manager, making it possible to customize the entire
OAuth process.

Understanding Customization

The CA OAuth Toolkit is installed with default settings. Customization is your configuration of these settings. Some
customization is required while other customization is optional. Starting in version 4.0, all customization is performed in
the #policies and the extensions located in the Customizations folder.

#Policies

Each editable #policy in the Customizations folder has a target read-only policy in the Policy Fragments folder.

For example, the #OTK Variable Configuration policy contains customizations for the OTK Variable
Configuration target policy. Customizations are included by reference in the target policy.

NOTE

Values set in the #policy override default values in the corresponding target policy.

Extensions

Extensions handle more complex configuration. They contain policy logic overrides and are not prefixed with the #
character. They may contain assertions to double-click, disabled code to enable, and require flags to be set in the #policy.
Open the extension and read the comments for instructions specific to each extension.

For example, the OTK User Authentication Extension contains both logic and disabled assertions. The extension
targets the read-only OTK User Authentication policy.

Some extensions, such as the OTK CORS extension contain no code. Configure the extension as described by the
documentation within this site.

How to Migrate Your Existing Policy Customizations

In previous versions, you configured OTK by editing the default installed policies directly. Custom values for required and
optional configuration became part of the installed policies. Performing an upgrade required overwriting your existing
policies with new policies containing default configuration. Any customization was lost, unless you installed the latest
version with an instance modifier, compared the old and new policies, and manually copied over your customizations.

Starting in version 4.0, your customizations are stored safely outside of the installed default policies and are not
overwritten by upgrades.

To migrate your existing pre-4.0 policy configuration into the 4.0 workflow, consider the following strategies:

 119

 CA API Management OAuth Toolkit 4.3

• Read through your existing policies and record any custom settings. Install version 4.0 and transfer your custom
settings to the #policies and extensions in the new Customizations folder. The documentation on this site provides
instructions on how to configure functionality within the Customizations folder.

• Consider installing version 4.0 using an index modifier. Your new 4.0 policies will differ considerably from your old.
Locate any Context Variables with custom values. For each policy, set these values in the corresponding #policy.

Upgrading After 4.0

After migrating your customizations to the 4.0 framework, upgrade is easier. When policies in the Policy Fragments folder
are replaced to support new features, your customizations remain intact. Your custom values still override default values
in the newly upgraded policies. You no longer have to re-enter your hostname and database type, for example.

New features inevitably come with new context variables set to default values. Certain context variables may be
deprecated. New logic may be introduced. You must maintain your #policies and extensions to accommodate these
changes and provide custom configuration. As always, instructions for configuring new features is documented.

Configure Token Lifetime Properties
Customize token lifetime properties in the #OTK Token Lifetime Configuration policy.

NOTE

Temporary tokens have short lifetimes for security reasons. We recommend you do not extend the default value
for temporary tokens.

To configure token lifetimes:

1. In the Policy Manager, navigate to OTK/PolicyFragments/configuration.
2. Open the OTK Token Lifetime Configuration policy to view the token lifetime default settings.

Click Show Comments to see helpful translations from seconds to minutes or hours.
3. Copy the assertions of any Set Context Variables you want to customize.
4. Open the #OTK Token Lifetime Configuration policy found in the OTK/Customizations folder.
5. Paste the assertions and set new values for the Context Variables.

 120

 CA API Management OAuth Toolkit 4.3

6. Save and Activate.

The following guidelines apply:

• Set the access_token to expire before the refresh_token.
• The consumer_key and client_id values can be set to 0 (never expire).
• To effectively have a token that does not expire, set the value to the maximum value of 631138520 seconds (20 years).

OAuth 1.0 Variables Description
oauth_v1_consumer_key_lifetime_m Controls the lifetime of OAuth consumer keys.

Default: 0 minutes (never expire)
oauth_v1_access_token_lifetime_s Controls the lifetime of access tokens.

Set to 0 to make the token invalid immediately.
Default: 86400 seconds = 1 day.

oauth_v1_request_token_lifetime_s Controls the lifetime of request tokens.
Set to 0 to make the token invalid immediately.
Default: 300 seconds = 5 minutes.

OAuth 2.0 Variables
oauth2_auth_code_lifetime_sec Controls the lifetime of issued OAuth codes.

Set to 0 to make the code invalid immediately.
Default: 300 seconds = 5 minutes

oauth2_access_token_lifetime_sec Controls the lifetime of issued access tokens.
Set to 0 to make the token invalid immediately.
Default: 3600 seconds = 1 hour

oauth2_refresh_token_lifetime_sec Controls the lifetime of issued refresh tokens.
Default: 604800 seconds = 1 week
To effectively have a token that does not expire, set the value to
the maximum value of 631138520 seconds (20 years).

oauth2_client_id_lifetime_m Default: 0 minutes (never expire)
oauth2_client_id_lifetime_SDK_m Default: 10080 minutes = 1 week
OpenID Connect Variables
id_token_lifetime_s The lifetime of the OpenID session.

Default: 86400 seconds = 1 day

Client-Specific Customization
In OAuth Manager, you can configure settings for OAuth Clients and Client Keys through the Custom Field. Expressed as
a JSON message, this configuration is stored in the ${custom} variable. You can then use this variable for client specific
configuration within policy.

This page contains the following sections:

Set Parameter Values in the Custom Field for a Client (or Client Key)

To set parameter values in the Custom JSON Field for a client or client key:

1. Open a browser and go to: https://<yourgatewayURL>:8443/instanceModifier/oauth/manager
2. Provide a username and password. The type of access you are granted depends on your user role.
3. Click Clients.
4. Select a client and click Edit.

The Edit page appears with a Custom Field that accepts JSON content.
5. Provide JSON content that configures parameters for this client.

 121

 CA API Management OAuth Toolkit 4.3

6. Click Update Client.

Similarly, you can click List Keys for a client, then Edit. Provide custom JSON values for the client key and click Save.

For example:

How the Custom Field Content is Stored

The custom field contents are stored in the ${custom} variable that has the following structure:

{"client_custom": ${client_custom}, "client_key_custom": ${client_key_custom}}

Add Custom Logic to Extend the #Policy

Refer to the examples for the nesting logic.

Tasks include:

• Creating a custom_json Context variable to hold the JSON message content provided by the ${custom} variable.
• Using an Evaluate JSON Path Expression assertion to extract the key/value pairs.
• Adding a Compare Expression assertion to check if any custom values were set.
• Overwriting the default setting for the client with the custom values.

Set Context Variable: custom_json

Add a Set Context Variable assertion called custom_json to hold the content of ${custom}. The ${custom} variable
contains the JSON message parameter settings for the client and client key.

Use the following settings for the Set Context Variable assertion:
Variable Name – custom_json
Data Type – Message
Content-Type – application/json; charset=UTF-8
Expression – ${custom}

Evaluate JSON Path Expression

Set up the Evaluate JSON Path Expression to capture the parameters.

Use the following settings for the Evaluate JSON Path Expression assertion:

 122

 CA API Management OAuth Toolkit 4.3

Expression – Identify the parameters you want to extract. For example: $..lifetimes.oauth2_access_token_lifetime_sec.
Source – Click Other Message Variable and type custom_json. This Identifies where to find the custom content.
Destination – Create a new variable prefix to identify the result of the extraction. For example: at_lifeftime becomes
at_lifetime.result and holds the custom access token lifetime value.

Add a Compare Expression Assertion

Add a Compare Expression assertion to check if any custom values are set. The expression is specific to the parameters
you are checking. For example:

Use the following settings to check to see if the "lifetimes" element exists in the JSON message:

Variable – custom_json
Data Type – Unknown/Other
If Multivalued – All values must pass
Add – Simple Comparison

Set up the Simple Comparison rule as:
(does) contain Right Expression – lifetimes (or whatever you're checking here for content).
Case Sensitive – unclick

 123

 CA API Management OAuth Toolkit 4.3

Overwrite the Default Setting of the Context Variable

Add a Set Context Variable assertion to overwrite the parameter with the result of the JSON extraction.The result
of the JSON extraction is stored in a variable created with the assigned Variable Prefix in the following format:
variablePrefix.result.

Hover your mouse over the Evaluate JSON Path Expression assertion to see what variables are automatically created.

In the following example, the Variable Prefix is added to the .found, .count, and .result, and results.

The Set Context Variable has the following properties:
Variable Name – The Context Variable you are customizing for this client. For example:
oauth2_access_token_lifetime_sec
Expression – The variable where the extracted value from the JSON message is stored. For example:
${at_lifetime.result}

Client-Specific Customization Examples

The following examples show how client-specific customization can be implemented:

Customizing Token Lifetime for a Specific Client

The following policy example shows how custom settings for the access token lifetime and refresh token lifetime are set
for a specific client. The configuration is performed in the #OTK Token Lifetime Configuration policy.

Customizing Token Behavior for a Specific Client Identified by Client Key

The following example shows how the #OTK Storage Configuration policy was extended to provide global defaults and
custom token behavior for a specific client key.

The logic includes:

• Global configuration by setting default values for the following Context Variables:
max_oauth_token_count = 5
max_oauth_token_behaviour = error

• Specific configuration for clients/client keys that overrides the global configuration:
For the Client Key, the following custom values are set:

 124

 CA API Management OAuth Toolkit 4.3

• Similarly, the following custom values are set for the client:
{"max_token_count": 7, "max_token_behaviour": "cycle"}

• This configuration is not applicable to CLIENT CREDENTIALS grant type.

The policy can be coded as follows:

Global Token Count

The global section sets the rule. It contains Context Variables that establish default values for all clients. There is no check
required for the ${custom} variable.

The code determines the following global behavior:

 125

 CA API Management OAuth Toolkit 4.3

• With the max_oauth_token_count set to 5, all clients can access four additional instances of the same app without
logging out of the first instance.

• When a client attempts to log into more than five instances, the max_oauth_token_behaviour setting indicates that
an error is returned.

Per-Client Token Count

The per-client section sets the exception to the rule. It contains logic that checks for any content within the ${custom}
variable, extracts the values of parameters associated with the client and client key, then overrides the default global
setting of these parameters for the specific client.

The code to set per-client behavior is as follows:

• The custom_json Context Variable holds the ${custom} variable contents.
• The JSON contents are extracted.
• If the max_oauth_token_count is found in the JSON object, the Context Variable max_oauth_token_count is set to its

associated value.

In this example, because the Client Custom and Client Key Custom fields are both set, the Client Key Custom takes
precedence as it is the first assertion code block found to be true.

Configure the Authorization Server
The web content for the authorization server is hosted in the OTK Authorization Server Website Template policy.
Customize the website by changing the text, the logo, and style sheet. Do not change the variable names or remove
variables.

Alternatively, host the website on an external web server and point to the location.

Customize Graphic Elements

Graphic elements appear in the header and footer of the website page and include the corporate logo and style sheet.
The default logo is "CA Technologies".

To customize graphic elements of the authorization server website template:

1. In Policy Manager, navigate to OTK/Policy Fragments/configuration/Authorization Server.
2. Open the OTK Authorization Server Website Template policy and expand the assertions. You cannot edit this read-

only policy directly.
3. Copy the Set Context Variable content assertion. The assertion contains an HTML form.

4. Navigate to OTK/Customizations/Authorization Server/
5. Open the #OTK Authorization Server Website Template policy and locate the following comment: "getting started:

copy variable 'content'..."
6. Paste the Set Context Variable content assertion.
7. Double-click the Set Context Variable content assertion to access the HTML content.

 126

 CA API Management OAuth Toolkit 4.3

8. Expand the dialog box and edit the following HTML content by providing custom information for the following elements:

Element Default Notes

<title> ${authorization_server_name} The name of the web page

<style> ${css} Provide your internal style sheet HTML,
or replace the <style> element with
<link> and reference one or more
external style sheets.
For example,

<link rel="stylesheet"

 type="text/css"

 href="mystyle.css"></link>

 ${logo} Provide the data URI or a link for your
custom logo. For example:

<img src="myLogo.jpg"

 alt="grobco"

 style="width:200px;height:200px;">

<div id="dynamicContent"> ${new.content} Replace with your custom website
template content.

<p class="portal-copyright"> @ CA Technologies. All rights

 reserved.

Replace the text with your copyright
information.

9. Click OK to save the customization changes.
10. Save and Activate the #policy.

Customize Text Content

Default text shown on the Authorization Server webpage is associated with the following three tasks:

• Login
• Consent
• Reset

The text for these tasks is expressed in a new.content variable and is associated with
a corresponding ${task} variable. For example, the variable ${task} equal to login

 127

 CA API Management OAuth Toolkit 4.3

is followed by the new.content Context Variable containing the "Please login" string.

To customize the text:

1. In Policy Manager, navigate to OTK/Policy Fragments/configuration/Authorization Server.
2. Open the OTK Authorization Server Website Template policy.
3. Within the policy, find the folder that contains the three assertions that set the new.content variable.
4. Select the folder and copy it.

5. Open the #OTK Authorization Server Website Template policy located in OTK/Customizations/Authorization Server.
6. Paste the folder containing the assertions directly following:

Comment === Add any new Context Variables or extensions below ===
The code must appear before the logic that sets the website template formatting.

7. Double-click the assertions and modify content for any of the ${new.content}.
8. Save and Activate.

 128

 CA API Management OAuth Toolkit 4.3

Default Content

Task Default Content
login <p>Please login:</p>

<form action="${location_login_server}"
 method="POST" class="form-body form-
login" style="margin: 0;">
<input type="hidden" name="sessionID"
 value="${sessionID}"/>
<input type="hidden" name="sessionData"
 value="${sessionDataJWT}"/>
<div class="control-group">
<label>Username *</label>
<input type="text" name="username"
 class="input-block">
</div>
<div class="control-group">
<label>Password *</label>
<input type="password" name="password"
 class="input-block">
</div>
<div class="row-fluid">
<div class="span12">
<button type="submit" class="btn btn-
primary pull-right" name="action"
 value="login" style="margin-left:
 2em;">Login</button>
<button type="submit" class="btn btn-
primary pull-right" name="action"
 value="cancel" style="margin-left:
 2em;">Cancel</button>
</div>
</div>
</form>
<div style="clear: both; padding-top:
 1em;">
<!--social_login-->
</div>

 129

 CA API Management OAuth Toolkit 4.3

consent <p>Welcome ${resource_owner}</
b> (not ${resource_owner}? <a
 href="${location_login_server}?
action=reset">Click here)</p>
<p>
A client with the following properties is
 seeking access to resources:
</p>
<table>
<tr><td>Client Name:</td><td>
${client_name}</td></tr>
<tr><td>SCOPE (permissions):</
td><td>${scope}</td></tr>
</table>
<p>Please grant or deny the request</p>
<form action="${location_consent_server}"
 method="POST">
 <input type="hidden" name="sessionID"
 value="${sessionID}"/>
 <input type="hidden" name="sessionData"
 value="${sessionDataJWT}"/>
 <table>
 <tr>
 <td><button type="submit" class="btn
 btn-primary pull-right" name="action"
 value="Deny" style="margin-left:
 2em;">Deny</button></td>
 <td><button type="submit" class="btn
 btn-primary pull-right" name="action"
 value="Grant" style="margin-left:
 2em;">Grant</button></td>
 </tr>
 </table>
</form>

wrong user <p>Please go back to the client and
 request access to resources again</p>

Customize the Error Message

The error message is set as HTML code in the error.msg Context Variable in the OTK Authorization Server Website
Template policy.

To customize the error message:

1. In Policy Manager, navigate to OTK/Policy Fragments/configuration/Authorization Server.
2. Open the OTK Authorization Server Website Template policy.
3. Locate and copy the Set Context Variable error.msg assertion that has default HTML content assigned.

 130

 CA API Management OAuth Toolkit 4.3

4. Open the #OTK Authorization Website Template policy located in OTK/Customizations/Authorization Server.
5. Find the comment: ===getting started: copy 'error.msg"...
6. Paste the Set Context Variable error.msg assertion.
7. Double-click the assertion and provide your custom error message in HTML format.
8. Click OK.
9. Save and Activate.

Host Pages on External Servers

By default, the Authorization server is hosted on the Gateway server (localhost). Optionally, you can use an external
website to host the login and consent pages. Different servers can be used for login and consent. Integrate with an
existing login page, or create a new login page.

Any external authorization server must be able to perform the following tasks:

• Validate and create signed & encrypted JWT using a shared secret.
• Authenticate the user.
• Redirect to /auth/oauth/v2/authorize/consent and include all required parameters.

To host the website on an external web server:

1. In Policy Manager, navigate to OTK/Policy Fragments/configuration/Authorization Server.
2. Open the OTK Authorization Server Configuration policy to access context variables shown in the following table.

Context Variable Default Value Notes

host_login_server https://${gateway.cluster.hostname}:844
3

The hostname of the login server

host_consent_server https://${gateway.cluster.hostname}:844
3

The hostname of the consent server

path_login_server /auth/oauth/v2/authorize/login The path to the endpoint receiving the
login request

path_consent_server /auth/oauth/v2/authorize/consent The path to the endpoint receiving the
consent request

3. Copy the Set Context Variable assertions for any Context Variable you want to modify.
4. Open the #OTK Authorization Server Configuration policy.
5. Paste the Set Context Variable assertions and provide custom values for hostname and path information.

NOTE

For more information about integrating with an external server, see the following blog post:

 https://communities.ca.com/blogs/oauth/2016/10/04/howto-integrating-otk-with-external-login-server

 131

https://communities.ca.com/blogs/oauth/2016/10/04/howto-integrating-otk-with-external-login-server?et=notification.send

 CA API Management OAuth Toolkit 4.3

Secure Client/Server Communication

NOTE

Prior to OTK versions 4.2, custom configuration settings for Authorization server communication were made in
the OTK Authorization Server Configuration encapsulation assertion. This customization no longer takes
effect. Copy any previous customization made in OTK Authorization Server Configuration into the OTK
Security Header Extension policy.

The OTK Security Header Extension policy contains optional security settings that ensure HTTPS communication and
prevent clickJacking attacks. By default, these security settings are turned off. The assertions are disabled.

To enable and customize client/server communication settings:

1. Navigate to OTK/Customizations
2. Open the OTK Security Header Extension policy.
3. Enable any of the disabled assertions. The default settings when these assertions are enabled are described below.
4. Optionally customize the Context Variables and click OK.
5. Save and Activate.

Security HTTP Header Default Value Notes
Enforcement of HTTPS Strict-Transport-Security: max-

age=31536000; includeSubDomains
(replace existing)

Responses include the "Strict-Transport-
Security" header (HSTS) that restricts
browser communication to HTTPS only. For
more details on HSTS, see RFC6797.
The max-age parameter is the time
in seconds after the initial reception
that the HTTPS policy is enforced
for the host. If the host attempts an
HTTP communication within this time,
it is rejected. Default value is one
year.The includeSubDomains parameter adds
subdomains of the host to the HTTPS
restriction policy.

Enforcement of no frame overlap X-Frame-Options:Deny (replace existing) Protects browsers from clickJacking attacks
by preventing overlapping of multiple
frames.
Options include:
 Deny – The page cannot be displayed in a
frame.
 Sameorigin – The page can only be
displayed in a frame on the same origin as
the page itself.

 132

http://tools.ietf.org/html/rfc6797

 CA API Management OAuth Toolkit 4.3

Configure PKCE Support
Proof Key for Code Exchange (PKCE) is supported for enhanced authorization code security. By including a code
challenge to the authorization flow, it addresses the case where an authorization code is intercepted as it is sent back to
the client. For more information on the PKCE protocol and the security considerations, see IETF RFC 7636.

NOTE

Use of PKCE is optional. If your client request does not include a PKCE code challenge, the normal
authorization flow is followed.

However, device registration with an authorization code requires the use of PKCE.

For an authorization request to use PKCE:

1. The client creates a one-time secret (code verifier) that is used to generate a code challenge.
2. The client sends the code challenge value with the Authorization Request to the Authorization Server.
3. The server saves the code challenge and returns the Authorization Code to the client.
4. The client sends the Authorization Code and the code verifier to the server to get an access token.
5. The server checks the Authorization Code, but also the validity of the request source by using the code verifier to

create a code challenge.
If the code challenge value matches the previously stored code challenge, the request source is validated. The
server returns an access token.
If no code verifier is provided, or the code challenge values do not match, no access token is returned.

A malicious app using an intercepted Authorization Code cannot generate a matching code challenge and is, therefore,
not granted an access token.

OTK PKCE Validation Encapsulated Assertion

The following endpoints for authorization include the OTK PKCE Validation encapsulated assertion:

Endpoint Notes
/auth/oauth/v2/authorize Checks that code_challenge is present. If present, the

code_challenge_method must exist.
Adds code_challenge and code_challenge_method to the session
created with each authorization request.

/auth/oauth/v2/token Uses the authorization_code to look up the associated session.
If code_challenge exists, code_verifier must be provided as an
input.
Recalculates the code_challenge, from the code_verifier value
using the persisted code_challenge method.
Compares the calculated code_challenge to the persisted
code_challenge.

/connect/device/register Checks that code-verifier exists in the header when an
authorization code is used to register a device. Used with social
login and device2device login.

The following PKCE parameters are passed in by client in the URL of an authorization request.

PKCE Parameters Notes
code_verifier A random value of 43-128 characters. Created by the client.

Stored on the server upon an authorization request.
The recommended value is a 32-octet sequence that is base64url-
encoded to create a 43-octet URL safe string.

 133

https://tools.ietf.org/html/rfc7636

 CA API Management OAuth Toolkit 4.3

code_challenge_method The code challenge method used to generate the code challenge
value.
One of the following:
• plain – The code verifier value is used as the code challenge

value. This method is used when SHA256 encoding is not
available.

• S256 – SHA256 encoding is performed:
code_challenge=base64url(sha256(code_verifier))

code_challenge Value based on the code_verifier and the
code_challenge_method.

The following 112 error code is related to PKCE:

 {
 "error":"invalid_request",
 "error_description":"The given code_challenge or code_challenge_method is invalid"
}

Provide Enhanced HTML Form Security
Use any of the following procedures to address known security issues with the submission of HTML forms.

Use the "Protect Against Code Injection" Assertion

By default, the "Protect Against Code Injection" assertion inhibits the submission of HTML tags in the HTML-form
data. however, you can restrict any of the following additional character classes:

• PHP
• Shell
• LDAP
• DN
• LDAP Search
• XPath injection

Be aware that restricting characters in form data can cause problems. For example, restricting DN would cause the
submission of a callback URL of the format: https://<domain>:<port>/.

Disable Auto-Complete for the OTK Authorization Server

By default, HTML form auto-complete is enabled. This common browser behavior allows for quicker entry of usernames
and passwords.

However, you may wish to disable auto-complete on the OTK Authorization Server Website Template for improved
security.

NOTE

HTML form auto-complete is used in the OTK Authorization Server Website Template, the OAuth Manager, and
the Test Clients. However, the OAuth Manager and Test Clients are for internal use only. Consequently, HTML
forms for these they do not typically require the extra security provided by disabling auto-complete.

Turn auto-complete off by editing the <form> element and adding the autocomplete=false parameter setting.

 134

 CA API Management OAuth Toolkit 4.3

OTK Authorization Server Website Template

To disable form auto-complete:

1. Access OTK Authorization Server Website Template at OTK/Policy Fragments/configuration/Authorization Server/
2. Search for "please login". This phrase appears in the first Set Context Variable assertion for the new.content variable.
3. Copy the assertion.
4. Open #OTK Authorization Server Website Template policy found in OTK/Customizations/Authorization Server/
5. Paste the assertion.
6. Double click the assertion and, within the <form> element, add autocomplete=off

<p>Please login:</p>

<form action="${location_login_server}" method="POST" class="form-body form-login"
 style="margin: 0;" autocomplete="off">

7. Click OK to close the assertion properties dialog.
8. Save and Activate.

Customize Caches
OTK policies take advantage of caching to avoid database calls and improve performance. The policies use local
caches (visible on a single node only) and database-backed caches (visible throughout all cluster nodes). The default
configuration for these caches is optimized for performance. We recommend using the default settings.

Customization of cache properties is more likely when you create caches for your own services.

The following sections relate to OTK cache customization:

OTK Cache Encapsulated Assertions

The following OTK encapsulated assertions are used in multiple policies:

 135

 CA API Management OAuth Toolkit 4.3

• OTK Cache Store
• OTK Cache Look Up
• OTK Cache Remove
• OTK Cache Flush

OTK Cache
Encapsulated Assertion Required Input Variables Optional Input Variables Notes

OTK Cache Store cacheID

cacheKey

maxEntriesmaxEntryAge

maxEntrySize

Stores an item to the cache. If
the cache does not exist, one
is created. If the key exists,
the existing item is overwritten.
Reduces the load on back-end
services and improves response
times.
Optional Variables:
maxEntries – The number of
cached entries that the store
can hold. When this maximum
is reached, each new item
replaces the oldest one in the
store.
maxEntryAge – The maximum
age (in seconds) of items in
the cache before they are
discarded.
maxEntrySize – The maximum
size (in bytes) of the items to
cache.

OTK Cache Look Up cacheID
cacheKey

maxEntryAge Retrieves the cached contents
from an existing cache store.
On success, the contents
are placed into the message
target of your choice (request,
response, or context variable).
On failure, an error is returned.
The maxEntryAge variable
acts as a filter. If an item is
determined to be below this age,
it is retrieved from the cache
and returned in the response.
If the cached item exceeds this
age, it is not retrieved.

OTK Cache Remove cacheID

cacheKey

maxEntriesmaxEntryAge

maxEntrySize

Removes an item from the
cache.
Items meeting criteria set by any
of the optional properties are
removed. Items exceeding any
of the maximum thresholds set
by optional properties remain in
the cache.

OTK Cache Flush cacheID maxEntryAge Empties the cache.
If an item is determined to
exceed the maxEntryAge value,
it remains in the cache.

 136

 CA API Management OAuth Toolkit 4.3

To learn how the OTK Cache Look Up and OTK Cache Store assertions are used together, examine existing policies such
as OTK Client Validation.

OTK Cache Remove and OTK Cache Flush assertions are used for the specific removal of items and cache clean up.

What are the Default Cache Settings?

Default settings for the OTK cache assertions are set in the read-only OTK Cache Handler policy.

The following input variables are set with default values and are used as criteria for storage, retrieval, and removal
operations:

• maxEntries – The default is 10000.
Indicates the number of cached entries that a store can hold. When this maximum is reached, each new item replaces
the oldest one in the store.

• maxEntryAge – The default is 300 seconds.
Indicates the maximum age (in seconds) of items in the cache before they are discarded.

• maxEntrySize – The default is 10000 bytes.
Indicates the maximum size (in bytes) of the items to cache.

The Cache Handler policy and the OTK encapsulated assertions are located in OTK/Policy Fragments/caching.

How do I Customize Settings for a Specific Cache?

The OTK Cache Handler policy is read-only. To set custom cache settings, set context variables in the OTK Caching
Customization policy.

The combination of cacheID and maxEntryAge values create the actualCacheID variable that is used by the
look up and store cache operations.

To customize a cache:

1. In Policy Manager, go to OTK/Customizations/caching.
2. Open the OTK Caching Customization policy.

The policy contains disabled folders providing a template for each cache you want to customize.
3. Expand the folders, right-click, and select Enable All Assertions.
4. Click Show Comments to view the example.
5. In the block of assertions for myCache, double-click the "Compare Variable: ${cacheID} is equal to myCache: If

Multivalued all values must pass" assertion.
6. Click Edit and replace the Right Expression "myCache" default value with the cacheID of the cache you want to

customize.
For example, "accessTokenValidation".

7.

Click OK.
8. Provide custom values for one or more Context Variables.

The screenshot shows customization of the accessTokenValidation cache with the maxEntryAge Context Variable set
to zero (0). This setting requires a database lookup for each single access_token validation.

 137

 CA API Management OAuth Toolkit 4.3

9. Remember to delete any Context Variables that you do not want to customize!

The Context Variable settings in the OTK Caching Customization policy override the default settings in the policies
using the cache.

10. Save and Activate.

Monitoring Caches

Use the Add Audit Detail assertion to monitor content going into and retrieved from the cache.

The messages are recorded either in the audit records or a Gateway log, depending on how the assertion is configured. If
audit details are directed to the audit log, the message appears in the "Associated Logs" tab in the Event Details Pane of
the Gateway Audit Events window.

To monitor content going into the cache:

1. Go to OTK/Customizations/caching and open the OTK Cache Store Customization policy.
2. Place an Add Audit Details assertion before the Store to Cache Assertion.
3. Double-click the Add Audit Details assertion and add the properties you want to return. See Configuring Audit Detail

Properties.
4. Save and Activate.

To monitor content retrieved from the cache:

1. Open the OTK Cache Lookup Customization policy
2. Place an Add Audit Details assertion after of the Look Up in Cache assertion.
3. Double-click the Add Audit Details assertion and add the properties you want to return. See Configuring Audit Detail

Properties.
4. Save and Activate.

 138

 CA API Management OAuth Toolkit 4.3

Configuring Audit Detail Properties

Setting Description

 Message Type a message in the box. This message is displayed when the
audit appears in the Gateway Audit Events window.
Include context variables within the message to reveal additional
information about the audit condition, if necessary.

 Audit Select this option to direct the audit detail message to the Audit
log sink.

 Log Select this option to direct the audit detail message to the
Gateway log sink. This is useful for situations where (for example)
the logged information is too large to be comfortably stored in the
audit database for extended periods of time. For example, storing
trace information from a policy debug tracing.

 Custom logger name Select this check box if you want the logged information to be
identified by a custom logger name, rather than the default logger
name com.l7tech.server.policy.assertion.ServerAuditDetailAssertion.
If you choose to use a custom logger name, enter a suffix to be
added to the custom logger name, to ensure uniqueness. You can
reference context variables.
If a specified context variable cannot be resolved during run time,
the default logger name shown above is used.

 Level Select a severity level for your message from the drop-down
list. This level, along with the level set in the Audit Messages in
Policy assertion, determines whether your message appears in
the Gateway Audit Events window.

 139

 CA API Management OAuth Toolkit 4.3

Existing Caches and Policies

For your reference, the following caches are used by read-only OTK policies and target endpoints.

Cache ID
Target Policy or Endpoint

Using this Cache
Notes

allClientValuesCache OTK Client DB GetOTK Client DB Revoke KeyOTK Client DB UpdateOTK
Client NoSQL
GetOTK Client NoSQL Revoke KeyOTK Client NoSQL Update

The cache stores client values when
access_token requests are made. The
maxEntryAge value determines how often
the client configuration is looked up from
the database.
Reduce the cache maxEntryAge value for
more frequent calls. Increase the value for
less frequent calls.

allClientValidationValuesCache OTK Client DB Revoke Key
OTK Client DB Update
OTK Client NoSQL Revoke Key
OTK Client NoSQL Update
OTK Client Validation

OTK Client Validation is used to validate
that the client is still active in the system.
By default, the
allClientValidationValuesCache stores the
following client details:
client_type
client_name
scope
environment
created_by
client_custom
client_key_custom
serviceids
accountplanmappingids
client_secret

defaultCache OTK Session DB Caches the OTK session information.
The cache name can be configured when
using any encapsulated assertion named
"OTK Session".

openIDConnectCache OTK Session GET Used to retrieve values associated with
an authorization_code in the context
of OpenID Connect when the client
exchanges the code for an access_token.
OTK grant_type=AUTHORIZATION_CODE

 140

 CA API Management OAuth Toolkit 4.3

Cache ID
Target Policy or Endpoint

Using this Cache
Notes

accessTokenValidation OTK Require OAuth 2.0 Token Caches access_token validation results at
OAuth 2.0 protected endpoints. This value
is a compromise between performance
and accepted lifetime of invalid tokens.
The default cache time for saving client
information is set to 30 seconds. Increasing
this time elevates the risk of unauthorized
access.
The lifetime value is passed in through the
interface of the encapsulated assertion
wherever access_token_validation is
used. Modify the cache lifetime to lookup
access_tokens from the database more or
less frequently.
A lifetime value of 0 reduces performance
by requiring a database lookup for each
single access_token validation. Increasing
the lifetime value extends the expiration
time of an access_token.

authorizeCache /auth/oauth/v2/authorize Caches the static content on the
authorization server website (except for
images). This is useful if the website is
hosted on an external web server.
If the website template for the authorization
server website changes often, consider
modifying the cache lifetime. The cache
does not include form values of images.

userSessionIDCacheV2 /auth/oauth/v2/authorize
OTK Session - Store

Used with the session cookie "l7otk2a"
Customize the lifetime of the user session
(cookie lifetime) by modifying the variable
"ownerCacheAge. The value is expressed
in seconds.

l7ManagerCache /oauth/manager
/oauth/manager/clients
/oauth/manager/tokens
OTK Session - Store

Used with the cookie "l7manager".

consumerSecretCache /oauth/validation/validate/v1/signature Used with temporary values during the
OAuth 1.0 flow to validate the signature.

Set an Alternative HTTPS Port
By default, the OAuth Toolkit policies are configured to use Port 8443 for HTTPS communication. This includes logging in
to the OAuth Manager.

Customize the OTK to use an alternative port by configuring both policies and APIs:

Configuring Policies

The following policies contain references to Port 8443:

Custom configuration is made in the corresponding #policies.

 141

 CA API Management OAuth Toolkit 4.3

NOTE

In each case for the policies you:

1. Copy the default Set Context Variable assertions containing the 8443 port from the read-only policy.
2. Paste the default assertions into the corresponding editable #policy.
3. Edit the port number.
4. Save the #policy.

OTK Client Context Variables

This policy contains three references to the default 8443 port.

To set an alternate port number:

1. In Policy Manager, open the read-only OTK Client Context Variables policy. This policy contains context variables set
to the default 8443 port.

2. Select and copy the following Set Context Variable assertions in the read-only policy. Use Ctrl-click to select multiple
assertions.
– host_oauth2_auth_server
– host_oauth_manager
– host_oauth_test_clients

3. Open the #OTK Client Context Variables policy found in the Customizations/Tools folder. By default, no context
variables are set.

4. Paste the copied assertions into the #OTK Client Context Variables policy.
5. Double-click each assertion, edit the port number, and click OK.
6. Save and Activate the #OTK Client Context Variables policy.

OAuth Manager Config

This policy contains one reference to the default 8443 port.

To set an alternate port number:

1. In Policy Manager, open the read-only oauth manager config policy.
2. Copy the Set Context Variable assertion for this.app.url:

Set Context Variable this.app.url as String to: https://${request.url.host}:8443${request.url.path}
3. Open the #oauth manager config policy found in the Customizations/oauth manager folder. By default, no context

variables are set.
4. Paste the copied assertion into the #oauth manager configpolicy.
5. Double-click the assertion, edit the port number, and click OK.
6. Save and Activate the #oauth manager config policy.

 142

 CA API Management OAuth Toolkit 4.3

OTK Authorization Server Configuration

This policy contains two references to the default 8443 port.

To set an alternate port number:

1. In Policy Manager, open the read-only OTK Authorization Server Configuration policy.
2. Copy the following Set Context Variable assertions:

– host_login_server
– host_content_server

3. Open the #OTK Authorization Server Configuration policy found in the Customizations/Authorization Server folder.
By default, no context variables are set.

4. Paste the copied assertions into the #OTK Authorization Server Configuration policy.
5. Double-click the assertion, edit the port number, and click OK.
6. Save and Activate the #OTK Authorization Server Configuration policy.

OTK Variable Configuration

This policy contains two references to the default 8443 port.

To set an alternate port number:

1. In Policy Manager, open the read-only OTK Variable Configuration policy. Expand the assertions.
2. Copy the following Set Context Variable assertions:

– host_oauth2_auth_server
– oauth2_server_port

3. Open the #OTK Variable Configuration policy found in the Customizations/Tools folder. This #policy may already
contain custom settings for your oauth2 server hostname and certificate.

4. Paste the copied assertions into the #OTK Variable Configuration policy.
5. Double-click the assertions, edit the port number, and click OK.
6. Save and Activate the #OTK Variable Configuration policy.

 143

 CA API Management OAuth Toolkit 4.3

Configuring APIs

The APIs referencing the default 8443 can be configured directly.

The following APIs both reference the default 8443 port for the this.app.url.login context variable:

• /oauth/manager/tokens
• /oauth/manager/clients

You perform the same procedure in both APIs.

To configure the API with an alternative port:

1. In Policy Manager, open the API.
2. Search for "8443" and locate the assertion that sets the this.app.url.login context variable.
3. Double click the assertion, edit the port number, and click OK.

4. Save and Activate the API.

 144

 CA API Management OAuth Toolkit 4.3

Registering Clients with the OAuth Manager
The OAuth Manager displays information about registered OAuth clients and associated OAuth tokens that are used to
access OAuth protected resources.

Perform the following tasks that are related to the OAuth Manager:

Log into the OAuth Manager

To log into OAuth Manager:

1. Open a browser and go to: https://<yourgatewayURL>:8443/<instanceModifier>/oauth/manager
2. Provide a username and password. The type of access you are granted depends on your user role. See OTK User

Role Configuration.
3. Click Clients to list, delete, and register OAuth clients.

Register a Client

To register a client:

1. Open the OAuth Manager.
2. Click Clients.
3. Click Register a New Client.

 145

 CA API Management OAuth Toolkit 4.3

4. Fill out the form using the fields below, then click Register:

Field Field Option Note

Client Name Required. Do not use leading, trailing, or
multiple spaces.

Organization Required. Do not use leading, trailing, or
multiple spaces.

Description Optional

Registered By Set to your logged in username.

confidential Default. More secure.Client Type

public Less secure.

Client Key System generated UUID. You can
overwrite it.

Client Secret (Basic) Client authenticates with authorization
server by including the Client ID and
Client Secret as client credentials using
the HTTP Basic authentication scheme.
This option is default.

Client Secret (Post) Client authenticates with authorization
server. It includes the Client ID and
Client Secret as client credentials in the
body of the request.

Client Secret (JWT) Client authenticates with authorization
server using JWT signed with client
secret.

Authentication Method

Private Key (JWT) Client authenticates with authorization
server using a JWT signed with a private
key. Using this option, either jwks or
jwks_uri must be defined to share the
public key with the Authorization server.
See Client Authentication for more
details.

jwks The value of client JSON Web Key Set

jwks_uri The URL of the client JSON Web Key
Set. Example: https://[Gateway]:[port]/
[file].json

Client Secret System generated UUID. Maximum 255
characters.

Master Key Applies only to clients using the CA
Mobile API Gateway (MAG). Check the
box to make the client key a master key.
This enables dynamic client id creation.
See MasterKey.

ENABLED Allows the client app to be used
immediately after registration.

Status

DISABLED Suspends use of the client app.

 146

 CA API Management OAuth Toolkit 4.3

Scope Provide the default scope requests for
the client. Maximum 4000 characters.
For details, see Scope.

Callback URL Provide values. For details,
see Callback.

Environment The Environment value is not validated
by the OTK by default. Set the value
to the client's associated platform such
as iOS, Android, or web. You can enter
the environment value to filter search
results from the List Keys page. You
can also customize OTK policies to take
advantage of environment information
during OAuth related requests.

You have registered a new client.

Set the Master Key for Mobile Clients

The Master Key setting applies only to mobile clients using the CA Mobile API Gateway (MAG) and enables dynamic
client id creation.

NOTE

If you are using MAG registered mobile clients, you must click Master Key to enable dynamic client id creation.
Static client id creation is deprecated.

A master key allows the registered MAG client to retrieve new client credentials at the /connect/client/initialize default
endpoint but not to consume any protected endpoints. The endpoint issues an original set of client credentials for an
initial application registration, then upgrades client credentials for a known client_id. This dynamic client id creation allows
for multiple instances of the same running app and is used for device-to-device login.

Click the check box to indicate that client key for this client is a master key. The option to specify a client secret is
unavailable. When the key is added, the OAuth Manager automatically sets the client secret value to the client_id value.
Similarly, if you manually set the client secret to the generated client key, the client is treated as having a master key.

Behavior is as follows:

• Only master keys can be used to access the /connect/client/initialize API which initializes the Mobile SDK with the
MAG server. The API endpoint dynamically issues unique client credentials (non-master keys).

• Only clients with non-master keys can request OAuth tokens.
• If a master key is deleted, all keys that were issued based on that master key are also deleted. Any mobile app that is

configured with a deleted key is disabled.
• For the first app on a non-registered device, a new set of client credentials is registered with the device-id.
• For subsequent apps, a new set of client credentials is registered with the username that is associated with the given

device-identifier. Earlier client credentials that are associated with a device-id are updated to the username.

Set the Callback URL

The callback_uri is also known as the redirect_uri in OAuth 2.0.

 147

 CA API Management OAuth Toolkit 4.3

For OAuth 2.0, the redirect_uri parameter may be used with response types.

The value of the callback_uri is a comma separated list of absolute URLs. You must include the scheme.

Valid callback_uri Invalid callback_uri
https://example.ca.com/callback,https://another-callback.ca.com/g
ranted

example.ca.com

https://example.ca.com:9876/callback?key=value
myscheme://for.my.mobile.native.app

Set Scope

The scope is a space-separated list of values that apply to OAuth 2.0 clients only and limit access for OAuth tokens. A
client is initially registered with a set of scope values. These become the default scope requests for the client. For mobile
clients, the default scope values are imported to the Mobile SDK through the msso_config.json file.

To restrict a scope request to a subset of the default set, set the scope request explicitly on the client side. A client cannot
be granted a scope that does not belong to the registered default set. If the requested scope contains explicit scope
requests that are outside of the registered default set, the access token is removed and a new access request is required
using scopes within the default set.

To add a scope that is not in the default set, you must re-register the client with a new default set containing the new
scope, and must export the msso_config.json file to the SDK.

An OAuth protected API can require specific scope values. Any access_token used at that API must be granted for all
required scope values, otherwise the request fails. If no scope is registered and no scope is requested, scope is set to
'oob'.

Default supported scope values are as follows:

Open ID Connect Scope Values

Scope Value Notes
openid The OpenID Connect scope enables clients to send requests to

the /userinfo endpoint. This scope causes the server to issue an
id_token.

address Requires openid scope.
phone Requires openid scope.
email Requires openid scope.
profile Requires openid scope.
user_role Requires openid scope.

 Returns the role of the resource_owner. By default it
is user or admin. The role admin is used in the OAuth Manager
and MAG Manager to identify an administrator. It has to be
requested with 'openid'. This Scope value is an OTK extension; it
is not part of OpenID Connect.

 148

 CA API Management OAuth Toolkit 4.3

Mobile Single Sign-On Related Scope Values

The scope request determines the authorization that is granted to the client by the resource owner. If the requested
scopes match or are a subset of the registered scope, access to the protected resource is granted. For mobile clients, the
default scopes are imported to the Mobile SDK through the msso_config.json file.

Requires a Mobile API Gateway (MAG) installation.

Scope Value Authentication Flow Notes
msso User Credentials The username/password scope. Used for

device registration with user credentials.
Password grant type request.
Requires openid scope. Clients requesting
an access_token using the msso scope
also receive an id_token that enables
mobile single-sign on across multiple apps.
Default endpoint for the user credentials
workflow is /connect/device/register.

msso_register User Credentials The social login scope. Same as the msso
scope, but is required for mobile single
sign-on when using social login credentials.
Follows the user credentials workflow for
the password grant type.
Default endpoint for the user credentials
workflow is /connect/device/register

msso_client_register Client Credentials The device to device scope. Required for
mobile single sign-on with client credentials,
not user credentials. Clients must be of type
"confidential" to use the client credentials
workflow. By default, clients using this
scope can register a device. The client
id and client secret are used for device
registration.
Default endpoint for the client credentials
endpoint is /connect/device/register/client.
This default endpoint is set in the MAG
Variable Configuration assertion as the
device_register_client_endpoint_path.

Mobile App Services Scope Values

Requires a Mobile App Services installation.

MAS Service Related Scopes Notes
MAS Storage mas_storage Required to access MAS Storage

functionality.. Used to Manage user and
group access to messages from enterprise
identity providers.

MAS Messaging mas_messaging Required to access MAS Messaging
functionality. Supports messaging using the
MQTT Pub/Sub model.

 149

 CA API Management OAuth Toolkit 4.3

MAS Identity mas_identity_retrieve_<resource>
mas_identity_create_<resource>
mas_identity_update_<resource>
mas_identity_delete_<resource>

Used for clients to store user messages
locally on the device or in the cloud.
At least one of the scopes is required.
Scopes permit the app to retrieve, create,
update, and delete data for a resource.
For example, mas_identity_retrieve_users
allows the app to retrieve users.
The specified <resource> value is one of
the following SCIM resource types:
• users
• groups
The following additional SCIM resource
types are accessible by default when
any of the valid mas_identity* scopes are
requested:
• ServiceProviderConfig
• ResourceTypes
• Schemas

Manage Clients

In the OTK, to request OAuth tokens and consume OAuth protected APIs, clients must be registered. The Manage Clients
page allows you to add, edit, or delete clients.

NOTE

Client management is not available via the OAuth Manager if the CA OAuth Toolkit has been integrated with the
CA API Portal.

Available Actions

 150

 CA API Management OAuth Toolkit 4.3

The available actions are:

• Delete – If you delete the client application, all client IDs that are issued for the client are also deleted.
• Edit – Edit the client name, organization, description, and client type.

Also allows you to set a value in JSON format for the client_custom field.
Click Update Client to save any changes.

• List Keys – Displays individual client information.
The following table shows additional information for selected fields.

List Client Keys

All registered client_keys for the given client application appear on the list client keys page.

Click Add Client Key to create additional keys for this client.

Available Actions

Perform any of the following available actions for a specific client key:

• Revoke – Deletes the client key. All tokens for this client key are also revoked.
• Edit – Edit properties for the key such as changing the status, disabling the key, adding scopes, and providing a

Callback URL.
Disabling a client key prevents the client key from being used for any future tokens, however it does not disable the
tokens for that client key.
Allows you to set a value in JSON format for the client_key_custom field.
Allows you to set the Service IDs and Account Plan Mapping IDs values that are used in the CA API Portal.

• Disable Tokens – Disables all tokens for the client key.
• Export – Used to export client information in JSON message format. Accesses the current server configuration

values. Use the JSON message to initialize OAuth clients or the CA Mobile API Gateway SDK for mobile applications.

Field Information

 Field Notes
 client_ident The identifier of the client.
 client_key In OAuth 2.0 the client_key = the client_id. They are

synonymous terms.Maximum 255 characters.
 secret The client secret. If the client key and the secret are the same

value, the client key is used as the master key in other endpoints/
policies.Maximum 255 characters.

 151

 CA API Management OAuth Toolkit 4.3

 scope The allowed scopes for the client.
Maximum 4000 characters.

 environment Identifies the client platform.
 callback In OAuth 2.0, call back is the redirect_uri. Multiple URIs are

supported.
 expiration The date until this key is valid. A value of 0 indicates that the key

never expires.
 status Either "ENABLED" or "DISABLED". Disabled tokens cause

resource requests to be denied.
 client_key_custom A custom field that is associated with the client key.

The custom value must be a valid JSON object and cannot
contain the following characters: < > &

 serviceIds A comma separated list of key strings that identify API services
that are registered with the CA API Portal.

 accountPlanMappingId A comma separated list of key strings that identify account plans
registered with the CA API Portal.

Manage Tokens

To manage tokens using the OAuth Manager:

1. Open a browser and navigate to this URL:
https://<Gateway_host>:8443/oauth/manager
The home page of the OAuth Manager appears.

2. Click Tokens to view values of issued tokens, and to disable or revoke tokens.
The following table shows additional information for selected fields.

 Field Description

 rtoken A refresh_token if available

 rexpiration The expiration date of the refresh token

 client_key In OAuth 2.0 it is the "client_id"

 status Disabled tokens cause resource requests to be denied

Available Actions

Perform any of the following available actions for a specific token:

• Revoke – Deletes the token.

• Disable/Enable – Toggles the current state of the token between invalid and valid.

 152

 CA API Management OAuth Toolkit 4.3

Manage OAuth Clients with CA API Portal
NOTE

The following information applies only to the on-premise (classic) version of the CA API Developer Portal. No
modification is required for the SaaS API Portal.

Integrating with the CA API Portal allows you to manage OAuth clients through the CA API Portal instead of through the
OAuth Manager.

To manage OAuth clients with the CA API Portal:

• Meet the preconditions described in Before You Begin

After integration, OAuth clients do not appear in the OAuth Manager. Clients are identified by API key (OAuth client_id)
and managed solely through the CA API Portal. However, you can still manage tokens through OAuth Manager.

Before You Begin

The following conditions must exist:

• /portalman/* services are deployed on the target gateway
• /api/keys/* services are deployed on the target gateway
• The assertion "Look Up API Key" is installed. The "Look Up API Key" assertion becomes available when you install CA

API Portal.

Replace the OTK Client DB Get Extension

Replace the default OTK client DB Get Extension policy with a new policy available for download from the following
instructions. The replacement policy sets the ${OTKDB} variable to false and provides code that looks up client_id’s from
the API Portal rather than the OTK database. The extension targets the read-only OTK Client DB Get policy located in
Policy Fragments/persistence/client.

To replace the OTK Client DB Get Extension:

1. Right-click the following link, select Save link as..., then save the OTK-4_ClassicPortal.xml file.
/content/dam/broadcom/techdocs/us/en/assets/docops/apimt/otk-4_classicportal.xml

2. In the Policy Manager, open the OTK Client DB GET Extension policy.
The OTK Client DB Get Extension policy is located in OTK/Customizations/persistence.

3. Click Import Policy and select the OTK-4_ClassicPortal.xml file.
The default policy code is replaced.

4. Click Save and Activate.

Register OAuth Test Clients

Optional. The test clients verify the integration of the OTK with the Portal.

Register the OTK test clients with the API portal by sending an HTTP PUT request to the target gateway.

NOTE

The OAuth test clients are not managed applications of the API Portal. They do not appear listed as new
applications.

 153

/content/dam/broadcom/techdocs/us/en/assets/docops/apimt/otk-4_classicportal.xml

 CA API Management OAuth Toolkit 4.3

Create the Request

1. Create an HTTP PUT request using: https://<yourGateway>:8443/portalman/1/api/keys.
2. Set the content-type to "text/xml; charset=UTF-8"
3. Add an authorization header:

Authorization: Basic base64(username:password)
4. Right-click the XML icon, select Save link as... and save the RequestMessage3301.xml file. Copy the contents and

use it as the message body for the request.
#unique_131

5. Update the value of CallbackUrl in the XML request message as follows:
– Replace HOST with the hostname of the target gateway.
– If policies are installed with a URL instance modifier, update the path component accordingly.

<l7:CallbackUrl>https://HOST:8443/mag/manager</l7:CallbackUrl>

6. Use a tool such as SOAPUI or Fiddler to send the request.

The API keys are now registered with API Portal.

 154

 CA API Management OAuth Toolkit 4.3

APIs and Assertions
The OAuth Toolkit uses the APIs provided by the different components. The APIs can be used by any other third-party
client.

The following APIs are provided and are required.

All APIs support HTTP GET and HTTP POST (content-type: application/x-www-form-urlencoded). The requirement for
SSL can be configured by customizing the policy.

Values within brackets followed by a "?" are optional parameters; for example: (¶meter=value)?

Swagger Documentation for OAuth Server APIs

API definitions are available in Swagger for the OAuth Server APIs.

The swagger documentation presented on the docops.ca.com site is served from static JSON files rather than a running
Gateway. To interact with the API through Swagger, access the /apidocs/auth/oauth/v2/swagger endpoint on your
Gateway and view the documentation using a Swagger viewer such as Swagger UI.

Access API Documentation with the Swagger UI Chrome Extension

To use the Swagger UI Chrome Extension:

1. Install the Swagger UI chrome-extension.

2. In the browser URL field, enter the URL to point to the apidocs endpoint on your Gateway:

https://<myGateway>:8443/apidocs/auth/oauth/v2/swagger
The JSON file appears. This step is required to accept the certificate from the gateway.

3. Either enter the URL in Swagger UI field as shown below, or click the Swagger UI Console icon.

 155

http://docops.ca.com

 CA API Management OAuth Toolkit 4.3

OAuth Server API Endpoints
 outputclass="supportedSubmitMethods">none

OAuth Toolkit APIs
The following APIs are available through the OAuth Toolkit:

none

OAuth Validation Point (OVP) API
There are several endpoints that are used to validate requests using OAuth.

This documentation explains the tasks associated with OVP. For the Swagger file, go to OAuth Toolkit APIs.

NOTE
 An endpoint containing "v2" means that it is used by OAuth 2.0. OAuth 1.0 support has ended.

Associated Tasks

Authorize a request_token

Authorizes a request_token, making it available in exchange for an access_token.

 /oauth/validation/v1/authorize?token=<value>&expiration=<value>&verifier=<value>
 token: the temporary token to be authorized
 expiration: the new expiration date that will be used if the token is valid
 verifier: the verifier used if the token is valid

Validation requirements:

• the expiration date has not expired
• a resource_owner must be assigned to the token
• a callback must be assigned to the token

 156

 CA API Management OAuth Toolkit 4.3

Response:

• status: 200, content-type: text/xml, body
• status: 401, content-type: text/xml, body

Validate a refresh_token

 /oauth/validation/validate/v2/refreshtoken?client_key=<value>&rtoken= <value>&scope=<value>
 client_key: the client_key issued for this token
 rtoken: the refresh_token to be validated
 scope: the scope to be used

Validation requirements:

• client_key must match the one that was used when the token was generated
• the expiration date must not be expired
• the status must be ENABLED

Response:

• status: 200, content-type: text/xml, body
• status: 401, content-type: text/xml, body

Validate OAuth Parameters and Signature

The OAuth Validation Point (OVP) is used when clients access resources. Validated tokens and signatures are cached to
improve performance. Ensure the default values for caching conform to the security policy at your organization.

APIs Notes
/oauth/validation/validate/v2/token Used to validate "oauth" parameters.

Validation depends on the token type. If token type is "MAC" or
"BEARER", the expiration date and the status will be verified.
The default cacheAge context variable is 60 seconds. A revoked
token continues to be authorized for up to 60 seconds beyond
revocation.

/oauth/validation/validate/v1/signature Used to validate "oauth_signature"
Validation requirements:
• The signature is verified
• The client_key is verified
• expiration date has not expired
• status is ENABLED
• The token is verified
• Expiration date has not expired
• status is ENABLED (for access_tokens only)
• For authorized request token, the verifier must exist in the

tokenstore
The default cacheAge context variable is 30 seconds. An
accepted signature is cached for 30 seconds.

 157

 CA API Management OAuth Toolkit 4.3

CORS Support for OTK APIs
Cross-Origin Resource Sharing (CORS) is a W3C specification that allows an API endpoint to accept cross-domain
requests.

OTK CORS Default Behavior

The OTK CORS encapsulated assertion determines the following default behavior for CORS:

• CORS support is set to optional, which allows the client to determine whether CORS is supported. CORS is neither
required, nor ignored.

• Preflight is set to false.
• Accepted Origins is set to accept all domains. (Access-Control-Allow-Origin: *)
• Allowed methods are GET, PUT, POST, DELETE, OPTIONS (Access-Control-Allow-Methods).

.

The OTK CORS encapsulated assertion applies to the following OAuth protected APIs:

• /auth/oauth/v2/token
• /connect/session/logout
• /apidocs/auth/oauth/v2/*
• /oauth/v2/protectedapi*
• /connect/session/status
• /openid/connect/v1/userinfo
• /auth/oauth/v2/client/export
• /auth/oauth/v2/token
• /auth/oauth/v2/token/revoke

Customize the Requirement of CORS for all OAuth Protected APIs

The following customization still uses the default CORS logic, but modifies the requirement of CORS across all APIs. It
overrides the setting of requireCORS for each API.

To customize the requirement of CORS:

1. Open the #OTK CORS policy found in OTK-version/customizations/cors.
2. In the top left panel of the Policy Manager, with the Assertions tab selected, search for Set Context Variable.
3. Click this assertion and drag it into the #OTK CORS policy.

A Context Variable Properties dialog appears.
4. For Variable Name type: requireCORS
5. For Expression type one of the following values:

– True – The API can only be used with CORS.
– Optional – (Default) The client determines whether CORS is used or not.
– Ignore – The API cannot be used with CORS. CORS request headers are ignored.

 158

https://www.w3.org/TR/cors/

 CA API Management OAuth Toolkit 4.3

6. Click OK.
7. Leave the useDefaultCORS variable set to true.
8. Save and Activate.

Context Variable Value

RequireCors One of the following:
• True – The API can only be used with CORS.
• Optional – (Default) The client determines whether CORS is

used or not.
• Ignore – The API cannot be used with CORS. CORS request

headers are ignored.

Customize the Requirement of CORS for a Specific API

Use the OTK CORS Extension policy to modify the OTK CORS encapsulated assertion per API. Modification takes the
form of a JSON message.

Find the assertion in OTK-version/Policy Fragments/configuration/cors.

To customize the requirement of CORS for a specific API:

1. Open the #OTK CORS policy found in OTK-version/customizations/cors.
2. Double-click the "Set Context Variable useDefaultCors" assertion and set the value to false .
3. Open the OTK CORS extension policy found in OTK-version/customizations/cors.
4. Provide custom policy to override the default CORS behavior.

Error Code

Error code 134 indicates a CORS-related issue.
For example:

x-ca-err: 3003134

{ "error":"invalid_request", "error_description":"The request did not match CORS
 requirements" }

OAuth Client Assertions
NOTE

The OAuth Client Assertions described on this page are available only when the CA Mobile API Gateway is
installed.

Use the following OAuth Client assertions to configure the Gateway as an OAuth client to consume OAuth-protected
resources.

 159

 CA API Management OAuth Toolkit 4.3

Access the OAuth Client assertions in the Policy Assertions panel under the XML Security folder.

Retrieve OAuth 1.0 Token Assertion

This assertion implements the two-stage handshaking process of OAuth 1.0.

Given the following:

• The user has an account on a website service that stores photos. To access the website, the user provides user
credentials.

• The consumer is a third party application that wants to obtain access to the protected resource (photos) on a user's
behalf.

• The user does not share the credentials to access the protected resource with the consumer.
• The consumer application is registered with the protected resource. The protected resource identifies the application

by generating a consumer key and consumer secret.

In stage one, the consumer application requests access to the photo site. The request is directed to an authentication
server and includes the unique consumer key identifying the application. The authentication server grants a
temporary OAuth request token. The consumer application redirects the user to a callback URL on the photo site
containing an OAuth verifier, where the user can explicitly allow (authorizes) the consumer application access to the
photos.

In the second stage, the consumer application requests an OAuth access token, using the consumer key, the request
token, and the verifier. The photo website grants the access token. The consumer application uses the access token to
access the protected resource.

Context Variables Set

oauth.access_token
oauth.access_token_secret
oauth.auth_req_url
oauth.full_access_token_response

 160

 CA API Management OAuth Toolkit 4.3

oauth.full_oauth_token_response
oauth.oauth_token
oauth.oauth_token_secret

Context Variables Used

oauth_callback
oauth_token
oauth_token_secret
oauth_verifier
request.http.method

Consume OAuth 1.0 Resource

The Consume OAuth 1.0 Resource assertion creates the OAuth authorization header. The header can be added to the
HTTP Authorization header to consume OAuth 1.0 protected resources.

Context Variables Set

oauth.resource_authorization_header

Context Variables Used

access_token
access_token_secret
request.http.method

Retrieve OAuth 2.0 Token Assertion

The Retrieve OAuth 2.0 Token assertion is used to retrieve an access token from the authorization server. The token
response from the authorization server may include a refresh token.
For authorization code and implicit grant types, this assertion implements the two-stage handshaking process of OAuth
2.0. It first returns the authorization request URL in a context variable. The client can then redirect the user-agent to the
authorization request URL. After the authorization server authenticates the resource owner and access is granted, this
assertion will be called back to perform the second stage handshaking, which will then return access token.

Context Variables Set

oauth.access_token
oauth.auth_req_url
oauth.full_token
oauth.refresh_token

Refresh OAuth 2.0 Token Assertion

The Refresh OAuth 2.0 Token assertion is used to refresh an access token. An access token can be refreshed only if the
authorization server issued a refresh token.

 161

 CA API Management OAuth Toolkit 4.3

Context Variables Set

oauth.access_token
oauth.full_token
oauth.refresh_token

Encapsulated Assertions
To find OTK related encapsulated assertions:

1. In the Policy Manager, go to Tasks, Extensions and Add-Ons, Manage Encapsulated Assertions.
2. Type OTK to filter the list. All OAuth encapsulated assertions start with OTK.
3. Select the encapsulated assertion and click Properties to view details.

 162

 CA API Management OAuth Toolkit 4.3

In the following descriptions, the term "encas" is used as an abbreviation of "encapsulated assertion".

Key encapsulated assertions include:

NOTE
This is not a comprehensive list of all encapsulated assertions. All other undocumented OTK encapsulated
assertions can be used as it is.

OTK Require OAuth 2.0 Token

Use this encapsulated assertion to allows access only when a valid access_token is presented by the client. The assertion
searches for access_tokens presented in the authorization header as a query parameter or as a post body parameter.
Use this assertion as early as possible in an API policy.

 163

 CA API Management OAuth Toolkit 4.3

This assertion uses the OTK Access Token Retrieval assertion to find the incoming access_token. Refer to that
description for error messages.

Drag the assertion into a policy and configure the properties shown in the table below.

Properties Parameter Name Type Notes
Required SCOPE(s) scope_required String If SCOPE is not required, this

value can be empty.
A space separated list
of required SCOPEs. An
access_token is only accepted
if it has been granted with those
SCOPE values.

Cache validation result (s) cache_lifetime Integer This value cannot be empty.
Represents the time in seconds
for which an access_token is
cached. The assertion initially
validates an access_token.
The validation result is then
cached until the cache period
expires. This increases
performance, but also enables
clients to use potentially
expired access_tokens. The
cache_lifetime value extends
the lifetime of the token. A value
of 0 indicates no caching is
performed.

Is this a one-time access-token? onetime Boolean Default value: false.
To allow an access_token to be
considered valid only once for
this endpoint, set this value to
true. This setting is rare, but
enables special use cases.

Fail if this SCOPE was granted? scope_fail Boolean Default value: false.
Set this value to “true” if a
request should fail in the case
that an access_token has been
granted for at least one the
specified SCOPE values listed
above

 164

 CA API Management OAuth Toolkit 4.3

Access Token given_access_token String Optional. The hardcoded
value of an access token or a
context variable representing
an access_token. Use this
property if an access_token is
made available, but not by the
client, or if the access_token is
passed using a non-standard
mechanism.

Context Variables

The encas sets the following context variables:

Context Variable Notes
${session.client_id} The client_id of the client that has received the token
${session.subscriber_id} the username of the resource_owner that has granted access for

the client and therefore to access the endpoint
${session.scope} the SCOPE that was granted for this access_token
${session.expires_at} the expiration time in seconds
${access_token} the access_token that was used with this request

OTK Access Token Retrieval

This encas is used within OTK Require OAuth 2.0 Token where it extracts an access_token from a request. It works on
given input variables and searches for an access_token. When the token is found, it is passed in as an authorization
header value:

authorization: Bearer <token>, authorization: MAC <mac-values>

Input Field Parameter Name Type Notes
Allow Authorization Header allow_header Boolean Indicates whether to accept

an access_token within the
authorization header.

Allow Parameter allow_query Boolean Indicates whether to accept and
access_token as query or from
post parameter.

Authentication Header auth_header String The content of the authorization
header to be used. Values with
scheme “Bearer” and “MAC” are
accepted

Parameter auth_param_token String The content of the variable that
contains the access_token to be
used

 165

 CA API Management OAuth Toolkit 4.3

Access Token given_access_token String The hardcoded value of an
access token or a context
variable representing an
access_token. Allows you
to provide an access_token
other than from a well known
location. This is useful if
the access_token is held
somewhere but not passed in
with a request.

Context Variables

The encas sets the following context variables:

Context Variable Notes
${access_token} The client_id of the client that has received the token
${auth_header} The username of the resource_owner that has granted access to

the client and therefore access to the endpoint
${auth_scheme} The token scheme. One of the following values:

• Bearer
• MAC

The assertion creates an error if no access token is found or if multiple locations within the request contained a token.

HTTP Header:

Status: 401

Content-type: application/json

Pragma: no-cache

Cache-Control: no-store

HTTP Body:

{

 "error":"invalid_request",

 "error_description":"Missing or duplicate token"

}

OTK Client Persist

The OTK model allows multiple OAuth clients and more than one client ID per client. The OTK Client Persist encas
persists a new OAuth client. By default there is no need to use this encas directly. It is used within OAuth Manager to
register a new client. Nevertheless, it may be useful for testing purposes or special cases.

Input Field Parameter Name Flag
Client Identifier client_ident Required.
Client ID client_key new client ID
Client Secret client_secret new client ID
Redirect URI callback new client ID

optional
Description description new client
Environment environment new client ID

optional

 166

 CA API Management OAuth Toolkit 4.3

Expiration expiration new client ID
Client Name client_name new client
Organization org new client
Registered By registered_by Required.
Valid SCOPE scope new client ID

optional
Status client_status new client ID
Client Type type new client
New Client persist_client Boolean
New Client ID persist_client_key Boolean
New Client including client ID persist_client_and_key Boolean

Create a New Client

To create a new client:

1. Set all required values.
2. Set all values flagged as "new client" (unless optional).
3. Set New Client boolean to true.
4. Ensure that the following values are unique:

– Client Identifier
– Client Name
– Client Name with Organization

Create a New Client ID

To create a new client ID:

1. Set all required values.
2. The Client Identifier value must match an existing value.
3. Set all values flagged as "new client ID" (unless optional).
4. Set New Client ID to true.
5. Ensure that the Client ID value is unique.

Create a New Client with a New Client ID

To create a new client with a new client ID:

1. Set all values (unless optional).
2. Set New Client including client ID to true.

Context Variables

The encas sets the following context variables to the values shown if no error occurs:

Context Variable Value
${status} 200
${result} persisted
${content_type} text/plain

 167

 CA API Management OAuth Toolkit 4.3

If an error occurs:

Status = 403

Content-type = application/json

Message:

{

 "error":"Client registration failed",

 "error_description":"The client could not be registered"

}

OTK SCOPE Verification

Use this encapsulated assertion whenever an API should process a request depending on the SCOPE that was granted
to an access_token. Multiple instances of this encas can be used within the same policy.

The MAG policies use this encas at the endpoint /opened/connect/v1/userinfo. Depending on the granted SCOPE the
endpoint returns an email address, profile information, and other values.

In a policy position this encas is always used after using “OTK Require OAuth 2.0 Token”.

Input Field Parameter Notes
Granted SCOPE scope.granted Insert the values that were granted to the

used access_token. In combination with
“OTK Require OAuth 2.0 Token” simply use
the example shown

Required SCOPE scope.required Insert the SCOPE value that must be found
in the list of the granted SCOPE values.
The encas will fail if the required SCOPE
cannot be found.

Fail if SCOPE is found (true|false)? fail Set this value to “true” if a request should
fail in the case that an access_token has
been granted for at least one the specified
SCOPE values listed above.

Context Variables

No context variables are set by this encas.

Error Codes
Error codes are structured as follows: 4-digits (identifies the API) + 3-digits (identifies the actual error).

Refer to the following sections:

How to Add Error Codes to a Policy

Error codes are structured as follows: 4-digits (identifies the API) + 3-digits (identifies the actual error).

Drag the OTK Fail with error message encapsulated assertion into a policy to provide standardized error responses
when error conditions are met. Using this single encapsulated assertion replaces having to define each error code
explicitly in each policy.

 168

 CA API Management OAuth Toolkit 4.3

For protected APIs, you can create your own codes by editing the #OTK Fail with error message policy. Use codes in
the 700 to 899 range. Do not change or overwrite the existing error codes.

To add error handling to a policy:

1. In the Assertions pane, locate the OTK Fail with error message assertion.
2. Drag the assertion into your policy where you logically want to trigger the error.

On release, the configuration dialog appears.
3. For Error Code, provide the 3-digit number that identifies the actual error. Use existing codes, or create custom codes

in the 700 to 899 range.
Refer to the Error Codes below for examples.

4. For API prefix for error code, provide a 4-digit number to identifier your API or use ${apiPrefix} to reference a pre-
defined API prefix.

 169

 CA API Management OAuth Toolkit 4.3

Commonly returned codes are:

1. xxxx201: The client authentication failed
2. xxxx202: The resource_owner authentication failed
3. xxxx203: SSL was required but not used by the client
4. xxxx204: SSL with client authentication was required but not used by the client
5. xxxx990: The token has expired
6. xxxx991: The access_token has not been granted for the required SCOPE
7. xxxx992: No access_token was included in the request, An access_token was included more than once
8. xxxx993: The token is disabled which means that associated client is disabled
9. xxxx000: Indicates that something unexpected went wrong

Error Handling

The Customize Error Response assertion (line 3) is required and sets up the error handling mechanism. By modifying this
assertion, you can override the default error handling response. It precedes the OTK Require OAuth 2.0 Token assertion
(line 7) in a policy. The complete list of error codes and messages are referenced in the OTK Fail with error message
encapsulated assertion (line 14).

By default, error codes are returned in the HTTP response message header
x-ca-err

field. For example:

x-ca-err: 3007103

Additionally:

• allow is added to the response if the given HTTP method is not valid. It contains a comma-separated list of valid
methods

• www-authenticate is added to the response if the given client or resource owner credentials are missing or could
not be validated

The message body contains:

 170

 CA API Management OAuth Toolkit 4.3

{ "error":"invalid_request", "error_description":"Missing or duplicate parameters" }

Error Codes (3-Digits)

The following table shows the 3-digit error codes for the OTK. This table has been updated for version 4.0.

Error code HTTP status Feature Category Info Description
 000 500 ALL invalid_request invalid The request failed

due some unknown
reason

 103 400 OTK invalid_request invalid parameters Required parameters
or headers were
missing in the
request

 110 400 OTK invalid_request invalid session The session has
expired

 111 429 OTK invalid_request Too many requests The number of
permitted requests
has been exceeded

 112 400 OTK invalid_request invalid PKCE request The server is
misconfigured so
that the public key
hash cannot be
created

 113 400 OTK invalid_request invalid grant The given token
(authorization code)
is not valid

 114 400 OTK invalid_request invalid redirect_uri Due to an invalid
or mismatching
redirection URI.

 115 400 OTK invalid_scope invalid scope was
requested

No registered scope
values valid for this
client has been
requested

 116 400 OTK invalid_response_ty
pe

unsupported
response type

None of the
supported
response_types
were used. Currently
supported: 'code',
'token', 'token
id_token' (in
conjunction with
scope=openid)

 117 400 OTK unauthorized_client unauthorized client
for this request

The client misses
authorization for
this request. By
default this error
does not occur
but it may happen
in certain custom
environments

 171

 CA API Management OAuth Toolkit 4.3

 118 503 OTK unsupported token
type

unsupported token
type

The server does not
support the given
type of token

 119 400 OTK unsupported_grant_
type

the given grant_type
is not supported

The given grant_type
is not supported by
the server

 120 400 OTK invalid_request invalid id_token The id_token may
have expired or had
missing claims

 121 400 OTK invalid_request invalid JWT The given JWT is not
valid

 122 400 OTK invalid_request invalid JWT/
id_token request

The JWT/ id_token
could not be created

 123 400 OTK authentication_error authentication was
denied

The resource_owner
cancelled
authentication

 124 400 OTK authorization_error authorization was
denied

The resource_owner
has denied access to
resources.

 125 400 OTK invalid_request invalid verifier A verifier has already
been set

 126 400 OTK invalid_request invalid status The client status is
not as expected

 127 400 OTK invalid_request expired client id The given client id
has expired

 128 400 OTK invalid_client invalid client name The given client
name is not valid

 129 400 OTK invalid_request invalid environment The given
environment is not
valid

 130 400 OTK invalid_request invalid client type The client type is not
valid

 131 400 OTK invalid_request invalid id_token
request

The id_token could
not be created

 132 400 OTK invalid_request invalid server
configuration

The server has not
been configured
correctly

 133 400 OTK invalid_request not a valid JSON
object

The given message
is not a valid JSON
object

 134 400 OTK invalid_request CORS requirements
were not met

The request did
not match CORS
requirements

 135 400 OTK invalid_request Token limit reached The maximum
number of tokens
has been reached

 136 400 OTK invalid_configuration Public Key Hash
could not be created

The public key
hash could not be
created. Contact the
administrator

 172

 CA API Management OAuth Toolkit 4.3

 201 401 OTK invalid_request invalid client The given client
credentials were not
valid

 202 401 OTK invalid_request invalid resource
owner

The given resource
owner credentials
were not valid

 203 403 OTK invalid_request missing SSL The client did not
use SSL

 204 403 OTK invalid_request invalid request Authentication failed
 205 401 OTK invalid_client invalid client

certificate
The given client
credentials were not
valid

 300 400 OTK invalid_request client could not be
persisted

The request
contained values
that are not unique
on the server

 301 400 OTK invalid_request client could not be
persisted

The request used
an invalid value for
'persist_type'

 303 400 OTK invalid_request invalid operation An invalid path was
used

 304 302 OTK consent_required consent is required The authorization
server requires user
consent

 305 400 OTK invalid_request invalid jwks and
jwks_uri

Both jwks and
jwks_uri are
provided at OIDC
registration. The
jwks_uri and jwks
parameters MUST
NOT be used
together.

 306 401 OTK invalid_client invalid client The given JWT for
client authentication
is not valid

 307 401 OTK invalid_client invalid client The request is a
replay attack

 308 401 OTK invalid_client invalid client The replay attack
protection could not
be applied

 990 401 OTK invalid_request invalid access_token The access_token
has expired

 991 401 OTK invalid_request invalid access_token The access_token
lacks permissions
(SCOPE)

 992 401 OTK invalid_request invalid access_token The access_token
is missing or it has
been provided more
than once

 993 401 OTK invalid_request invalid token The token is disabled

 173

 CA API Management OAuth Toolkit 4.3

API Identifier + Error Codes

The following error codes are defined in the OTK Fail with error message encapsulated assertion.

Error groups contain one or more APIs. To find an error, click the group then search for the specific error code.

NOTE

When an unexpected content_type is encountered, an error is returned, but the error code is inaccurate.

For error codes 1000-3000, see the CA Mobile API Gateway wiki; docops.ca.com/mag

This table has been updated for version 4.0.

Group/
API_ID

Code Category Info Reasons How to resolve

 3000/
request_authorization_init

3000000 invalid_request invalid

 3000103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters but
without value, empty

Repeat the request
including all required
parameters and/or
headers

 3000107 invalid_request invalid mag-identifier - The mag-identifier
is not associated
with a device

Repeat the request
using a valid mag-
identifier

 3000108 invalid_request invalid mag-identifier - The referenced
device is in status
'registered' and has
to be changed to
'activated' before this
request can succeed

Either use MAG
Manager to change
the device status or
contact the system
administrator to do
so

 3000112 invalid_request invalid PKCE request - the given
code_challenge is
invalid
- the given
code_challenge_method
is not supported

Repeat the request
using a valid
code_challenge
or supported
code_challenge_method

 174

https://techdocs.broadcom.com

 CA API Management OAuth Toolkit 4.3

 3000114 invalid_request invalid redirect_uri - None of the
registered
redirect_uri's were
used
- no redirect_uri
given: open
redirect_uri's are
not supported
and therefore the
redirect_uri has to be
provided
- no redirect_uri
given: if the client
is of type 'public'
a registered
redirect_uri has to be
provided
- no redirect_uri
given: if multiple
redirect_uri's are
registered one has to
be passed in
- The format is
not valid, e.g.: it
does not have a
scheme (https://,
myscheme://)

Repeat the request
using a valid
redirect_uri

 3000115 invalid_scope invalid scope was
requested

- No scope value
matched a registered
one for this client
- Multiple scopes
were requested but
not separated by a
space (' ') character

Repeat the request
using valid scope
values

 3000116 invalid_response_ty
pe

unsupported
response type

- The response_type
was malformed or is
unknown
- The response_type
'token id_token' was
requested but the
requested scope did
not include 'openid'
- The response_type
'token id_token'
was requested but
the request did not
include a 'nonce'

Repeat the request
using a valid
response_type

 175

 CA API Management OAuth Toolkit 4.3

 3000117 unauthorized_client unauthorized client
for this request

- The client may not
be valid for the used
response_type
- The client may not
be valid due to the
'type'
- A confidential
client using an
implicit grant must
have a registered
redirect_uri
- A public client must
have a registered
redirect_uri

Verify the
configuration of the
client and repeat the
request.

 3000130 invalid_request invalid client type - The client is of
type public but
has no registered
redirect_uri
- The confidential
client is using an
implicit grant type
but has no registered
redirect_uri

Check if the client
type for the client
is configured as
expected

 3000201 invalid_request invalid client - The given client_id
or client_secret is not
valid
- The client_id and/
or client_secret is
missing
- The credentials
were not provided
as base64 encoded
value
- The given client_id
is configured as
'Master Key'
- The client_id is
disabled
- The client_id has
expired (if it had a
limited lifetime)

Repeat the
request using valid
credentials. If the
error still occurs
contact the system
administrator

 3000203 invalid_request missing SSL - The client did not
use 'https' but 'http'

Repeat the request
using 'https'

 3001/
request_authorization_login

3001000 invalid_request invalid

 176

 CA API Management OAuth Toolkit 4.3

 3001103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters but
without value, empty

Repeat the request
including all required
parameters and/or
headers

 3001110 invalid_request invalid session - The session's
lifetime has expired
- The session has
been granted and
therefore used

Repeat the
authorization request
and have the
resource_owner
authenticate before
the session times out

 3001114 invalid_request invalid redirect_uri - None of the
registered
redirect_uri's were
used
- For missing
redirect_uri: Open
redirect_uri's are
not supported and
therefore the the
redirect_uri has to be
provided
- For missing
redirect_uri: If the
client is of type
'public' a registered
redirect_uri has to be
provided
- The format is
not valid, e.g.: two
redirect_uri's were
included

Repeat the request
using a valid
redirect_uri

 3001123 authentication_error authentication was
denied

- The
resource_owner has
denied login. 'action'
was set to 'cancel'
instead of 'login'

Convince the
resource_owner to
login

 3001202 invalid_request invalid resource
owner

- The given
username or
password is not valid
- The username
and/or password is
missing
- The social login
credentials were
invalid
- The cookie has
expired

Repeat the
request using valid
credentials. If the
error still occurs
contact the system
administrator

 177

 CA API Management OAuth Toolkit 4.3

 3001203 invalid_request missing SSL - The client did not
use 'https' but 'http'

Repeat the request
using 'https'

 3002/
request_authorization_consent

3002000 invalid_request invalid

 3002103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters but
without value, empty

Repeat the request
including all required
parameters and/or
headers

 3002110 invalid_request invalid session - Access to
resources was
granted but after the
session timed out
- Access to
resources was
denied but after the
session timed out
- The session has
been granted and
therefore used

Repeat the
authorization
process and have
the resource_owner
authenticate before
the session times out

 3002124 authorization_error authorization was
denied

- The
resource_owner has
denied access to
resources. 'action'
was set to 'Denied'
instead of 'Grant'

Convince the
resource_owner to
grant access

 3002135 invalid_request Token limit reached - The maximum
number of access
tokens has been
reached for the given
Client (App) and
Resource Owner

Revoke any unused
tokens or increase
the max number
of allowed access
tokens

 3002203 invalid_request missing SSL - The client did not
use 'https' but 'http'

Repeat the request
using 'https'

 3003/
request_token_password_flow,
request_token_code_flow,
request_token_refresh_flow,
request_token_client_creds_flow,
request_token_jwt_flow,
request_token_saml_flow

3003000 invalid_request invalid

 178

 CA API Management OAuth Toolkit 4.3

 3003103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters but
without value, empty

Repeat the request
including all required
parameters and/or
headers

 3003107 invalid_request invalid mag-identifier - The mag-identifier
is not associated
with a device

Repeat the request
using a valid mag-
identifier

 3003113 invalid_request invalid grant - The given
authorization code
has expired
- The given
authorization code
has been used
already
- The given
authorization code is
invalid
- The given
refresh_token has
expired
- The given
refresh_token has
been revoked

Repeat the
authorization
process using a valid
grant

 3003114 invalid_request invalid redirect_uri - The code to was
requested using a
different redirect_uri

Repeat the request
using a valid
redirect_uri

 3003115 invalid_scope invalid scope was
requested

- No scope value
matched a registered
one for this client
- Multiple scopes
were requested but
not separated by a
space (' ') character
- The refresh_token
request included
other or more
SCOPE values than
initially issued

Repeat the request
using valid scope
values

 3003117 unauthorized_client unauthorized client
for this request

- The client was not
the recipient of the
given token

Use a valid client;
the one that initially
received the
refresh_token

 3003119 unsupported_grant_
type

the given grant_type
is not supported

- and invalid
grant_type was used

Repeat the request
using a valid
grant_type

 179

 CA API Management OAuth Toolkit 4.3

 3003134 invalid_request CORS requirements
were not met

- The request did
not provide CORS-
required request
headers

Verify that the user-
agent (browser)
supports CORS
and adds required
headers to the
request

 3003201 invalid_request invalid client - The given client_id
or client_secret is not
valid
- The client_id and/
or client_secret is
missing
- The credentials
were not provided
as base64 encoded
value
- The given client_id
is configured as
'Master Key'
- The client is
disabled
- The client_id has
expired (if it had a
limited lifetime)

Repeat the
request using valid
credentials. If the
error still occurs,
contact the system
administrator

 3003202 invalid_request invalid resource
owner

- The given
username or
password is not valid
- The username
and/or password is
missing
- The JWT (id_token)
has expired
- The JWT (id_token)
has an invalid
signature
- The JWT (id_token)
is unknown. Only
JWT that were
issued by the server
can be used
- The JWT (id_token)
was revoked
- The SAML token
has expired
- The SAML token
has has an invalid
signature

Repeat the
request using valid
credentials. If the
error still occurs,
contact the system
administrator

 3003203 invalid_request missing SSL - The client did not
use 'https' but 'http'

Repeat the request
using 'https'

 3003993 invalid_request invalid token - The refresh_token
is disabled which
means that
associated client is
disabled

The token (client)
has to be enabled or
revoked and a new
one requested.

 180

 CA API Management OAuth Toolkit 4.3

 3004/
revoke_token

3004000 invalid_request invalid

 3004103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters but
without value, empty

Repeat the request
including all required
parameters and/or
headers

 3004117 unauthorized_client unauthorized client
for this request

- The client was not
the recipient of the
given token

Use a valid client

 3004118 unsupported token
type

unsupported token
type

- The given token is
of a type that is not
supported
- Neither a Bearer
'access_token' nor
'refresh_token' was
used

Contact the system
administrator

 3004134 invalid_request CORS requirements
were not met

- The request did
not provide CORS-
required request
headers

Verify that the user-
agent (browser)
supports CORS
and adds required
headers to the
request

 3004201 invalid_request invalid client - The given client_id
or client_secret is not
valid
- The client_id and/
or client_secret is
missing
- The credentials
were not provided
as base64 encoded
value
- The client is
disabled
- The client_id has
expired (if it had a
limited lifetime)

Repeat the
request using valid
credentials. If the
error still occurs
contact the system
administrator

 3004203 invalid_request missing SSL - The client did not
use 'https' but 'http'

Repeat the request
using 'https'

 3005/
client_details_export

3005000 invalid_request invalid

 181

 CA API Management OAuth Toolkit 4.3

 3005103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters but
without value, empty

Repeat the request
including all required
parameters and/or
headers

 3005132 invalid_request invalid server
configuration

- The server is
searching for an
unknown certificate

Verify that the server
has been configured
to search for its
public SSL cert via
the correct certificate
alias

 3005134 invalid_request CORS requirements
were not met

- The request did
not provide CORS
required request
headers

Verify that the user-
agent (browser)
supports CORS
and adds required
headers to the
request

 3005201 invalid_request invalid client - The given client_id
is unknown
- The client is
disabled

Check with OAuth
Manager for verify
the current state of
the client

 3005202 invalid_request invalid resource
owner

- The given
username or
password is not valid
- The username
and/or password is
missing

Repeat the
request using valid
credentials. If the
error still occurs
contact the system
administrator

 3005203 invalid_request missing SSL - The client did not
use 'https' but 'http'

Repeat the request
using 'https'

 3006/
resource_owner_logout

3006000 invalid_request invalid

 3006103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters but
without value, empty

Repeat the request
including all required
parameters and/or
headers

 182

 CA API Management OAuth Toolkit 4.3

 3006107 invalid_request invalid mag-identifier - The mag-identifier
is not associated
with a device
- The device was
registered as
a mobile client
(SCOPE=msso) but
no mag-identifier
was included

Repeat the request
including a valid
mag-identifier

 3006117 unauthorized_client unauthorized client
for this request

- The client is not
a valid user of this
token

Use a valid client
whose client_id is
found within the 'azp'
key of the id_token.
For mobile clients
the client has to be
valid for the given
mag-identifier

 3006134 invalid_request CORS requirements
were not met

- The request did
not provide CORS
required request
headers

Verify that the user-
agent (browser)
supports CORS
and adds required
headers to the
request

 3006201 invalid_request invalid client - The given client_id
or client_secret is not
valid
- The client_id and/
or client_secret is
missing
- The credentials
were not provided
as base64 encoded
value
- The client is
disabled
- The client_id has
expired (if it had a
limited lifetime)

Repeat the
request using valid
credentials. If the
error still occurs
contact the system
administrator

 3006203 invalid_request missing SSL - The client did not
use 'https' but 'http'

Repeat the request
using 'https'

 3007/
resource_owner_session_status

3007000 invalid_request invalid

 3007103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters

Repeat the request
including all required
parameters and/or
headers

 183

 CA API Management OAuth Toolkit 4.3

 3007134 invalid_request CORS requirements
were not met

- The request did
not provide CORS
required request
headers

Verify that the user-
agent (browser)
supports CORS
and adds required
headers to the
request

 3007203 invalid_request missing SSL - The client did not
use 'https' but 'http'

Repeat the request
using 'https'

 3007990 invalid_request invalid access_token - The token has
expired
- The token does not
exist

Request a new token

 3007991 invalid_request invalid access_token - The token has not
been granted for the
required SCOPE

Request a new
token that is scoped
accordingly

 3007992 invalid_request invalid access_token - No access_token
was included in the
request
- An access_token
was included more
than once

Use the
access_token
either within the
authorization header,
as query parameter
or as post body
parameter

 3007993 invalid_request invalid token - The token is
disabled which
means that
associated client is
disabled

The token (client)
has to be enabled or
revoked and a new
one requested.

 4000/
get_client_id_filter,
get_client_id_ident,
get_client_id_org,
get_client_id_name,
get_client_id,
get_all_client_id,
get_client_by_ident,
get_client_by_clientkey,
get_client_registered_by,
get_client_org,
get_client_by_name_org,
get_all_client

4000000 invalid_request invalid

 4000103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters but
without value, empty

Repeat the request
including all required
parameters and/or
headers

 184

 CA API Management OAuth Toolkit 4.3

 4000204 invalid_request invalid request - The requester did
not use mutual SSL

Repeat the request
using mutual SSL

 4000205 invalid_client invalid client
certificate

- The given client
certificate is
unknown

Repeat the
request using valid
credentials. If the
error still occurs
contact the system
administrator

 4000303 invalid_request invalid operation - The API was used
with an invalid
ending path value

Repeat the request
using a valid path

 4001/
persist_client,
persist_client_id,
persist_client_and_client_id

4001000 invalid_request invalid

 4001103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters but
without value, empty

Repeat the request
including all required
parameters and/or
headers

 4001201 invalid_request invalid client - The given
client_ident
references an
unknown client
- The given client is
unknown

Repeat the
request using valid
credentials. If the
error still occurs
contact the system
administrator

 4001300 invalid_request client could not be
persisted

- The 'client_ident'
already exist
- The 'client_key'
already exist
- The combination
of 'name' and
'organization' already
exists

Repeat the request
using unique values.

 4001301 invalid_request client could not be
persisted

- The given value
for 'persist_type' is
invalid

Repeat the request
using a valid value
for 'persist_type'

 4001303 invalid_request invalid operation - The API was used
with an invalid
ending path value

Repeat the request
using a valid path

 4002/delete_client,
revoke_client_id

4002000 invalid_request invalid

 185

 CA API Management OAuth Toolkit 4.3

 4002103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- For 'revoke': The
request included
'client_ident' and
'client_key'
- The request
included required
headers or
parameters but
without value, empty

Repeat the request
including all required
parameters and/or
headers

 4002303 invalid_request invalid operation - The API was used
with an invalid
ending path value

Repeat the request
using a valid path

 4003/
update_client,
update_client_id,
update_client_id_registered_by

4003000 invalid_request invalid

 4003103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters but
without value, empty

Repeat the request
including all required
parameters and/or
headers

 4003303 invalid_request invalid operation - The API was used
with an invalid
ending path value

Repeat the request
using a valid path

 4100/
persist_temporary

4100000 invalid_request invalid

 4100103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters that were
empty

Repeat the request
including all required
parameters and/or
headers

 186

 CA API Management OAuth Toolkit 4.3

 4100204 invalid_request invalid request - The requester did
not use mutual ssl

Repeat the request
using mutual SSL

 4100205 invalid_client invalid client
certificate

- The given client
certificate is
unknown

Repeat the
request using valid
credentials. If the
error still occurs
contact the system
administrator

 4100303 invalid_request invalid operation - The API was used
with an invalid
ending path value

Repeat the request
using a valid path

 4101/
persist_token_oauth1

4101000 invalid_request invalid

 4101103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters that were
empty

Repeat the request
including all required
parameters and/or
headers

 4101303 invalid_request invalid operation - The API was used
with an invalid
ending path value

Repeat the request
using a valid path

 4102/
persist_token_oauth2

4102000 invalid_request invalid

 4102103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters that were
empty

Repeat the request
including all required
parameters and/or
headers

 4102135 invalid_request Token limit reached - The maximum
number of access
tokens has been
reached for the given
Client (App) and
Resource Owner

Revoke any unused
tokens or increase
the max number
of allowed access
tokens

 4102303 invalid_request invalid operation - The API was used
with an invalid
ending path value

Repeat the request
using a valid path

 187

 CA API Management OAuth Toolkit 4.3

 4103/
update_token_status

4103000 invalid_request invalid

 4103103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters that were
empty

Repeat the request
including all required
parameters and/or
headers

 4103303 invalid_request invalid operation - The API was used
with an invalid
ending path value

Repeat the request
using a valid path

 4104/
update_oauth1_token_owner

 4104000 invalid_request invalid

 4104103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters that were
empty

Repeat the request
including all required
parameters and/or
headers

 4104303 invalid_request invalid operation - The API was used
with an invalid
ending path value

Repeat the request
using a valid path

 4105/
update_oauth1_token_verifier

4105000 invalid_request invalid

 4105103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters that were
empty

Repeat the request
including all required
parameters and/or
headers

 188

 CA API Management OAuth Toolkit 4.3

 4105125 invalid_request invalid verifier - the given token
already has an
associated verifier

Repeat the
authorization flow
and set the verifier
once only

 4105303 invalid_request invalid operation - The API was used
with an invalid
ending path value

Repeat the request
using a valid path

 4106/
revoke_oauth_token

4106000 invalid_request invalid

 4106103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters that were
empty

Repeat the request
including all required
parameters and/or
headers

 4106303 invalid_request invalid operation - The API was used
with an invalid
ending path value

Repeat the request
using a valid path

 4107/
delete_oauth_token

4107000 invalid_request invalid

 4107103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters that were
empty

Repeat the request
including all required
parameters and/or
headers

 4107303 invalid_request invalid operation - The API was used
with an invalid
ending path value

Repeat the request
using a valid path

 4108/
disable_oauth_token

4108000 invalid_request invalid

 189

 CA API Management OAuth Toolkit 4.3

 4108103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters that were
empty

Repeat the request
including all required
parameters and/or
headers

 4108303 invalid_request invalid operation - The API was used
with an invalid
ending path value

Repeat the request
using a valid path

 4109/
get_oauth_token,
get_oauth_token_param,
get_oauth_token_cid_ro,
get_oauth_token_status_ro

4109000 invalid_request invalid

 4109103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters that were
empty

Repeat the request
including all required
parameters and/or
headers

 4109303 invalid_request invalid operation - The API was used
with an invalid
ending path value

Repeat the request
using a valid path

 4110/
get_temporary_token_t,
get_temporary_token_t_v,
get_temporary_token_cid_ro

4110000 invalid_request invalid

 4110103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters that were
empty

Repeat the request
including all required
parameters and/or
headers

 190

 CA API Management OAuth Toolkit 4.3

 4110303 invalid_request invalid operation - The API was used
with an invalid
ending path value

Repeat the request
using a valid path

 4111/register_jwt 4111000 invalid_request invalid
 4111103 invalid_request invalid parameters - The request did not

include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters that were
empty

Repeat the request
including all required
parameters and/or
headers

 4111303 invalid_request invalid operation - The API was used
with an invalid
ending path value

Repeat the request
using a valid path

 4112/lookup_jwt 4112000 invalid_request invalid
 4112103 invalid_request invalid parameters - The request did not

include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters that were
empty

Repeat the request
including all required
parameters and/or
headers

 4112303 invalid_request invalid operation - The API was used
with an invalid
ending path value

Repeat the request
using a valid path

 4113/remove_jwt 4113000 invalid_request invalid
 4113103 invalid_request invalid parameters - The request did not

include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters that were
empty

Repeat the request
including all required
parameters and/or
headers

 191

 CA API Management OAuth Toolkit 4.3

 4113303 invalid_request invalid operation - The API was used
with an invalid
ending path value

Repeat the request
using a valid path

 4200/
delete_expired_session

4200000 invalid_request invalid

 4200103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters that were
empty

Repeat the request
including all required
parameters and/or
headers

 4200204 invalid_request invalid request - The requester did
not use mutual SSL

Repeat the request
using mutual SSL

 4200205 invalid_client invalid client
certificate

- The given client
certificate is
unknown

Repeat the
request using valid
credentials. If the
error still occurs
contact the system
administrator

 4200303 invalid_request invalid operation - The API was used
with an invalid
ending path value

Repeat the request
using a valid path

 4201/
delete_session

4201000 invalid_request invalid

 4201103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters that were
empty

Repeat the request
including all required
parameters and/or
headers

 4201303 invalid_request invalid operation - The API was used
with an invalid
ending path value

Repeat the request
using a valid path

 4202/get_session 4202000 invalid_request invalid

 192

 CA API Management OAuth Toolkit 4.3

 4202103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters that were
empty

Repeat the request
including all required
parameters and/or
headers

 4202303 invalid_request invalid operation - The API was used
with an invalid
ending path value

Repeat the request
using a valid path

 4203/
create_session

4203000 invalid_request invalid

 4203103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters that were
empty

Repeat the request
including all required
parameters and/or
headers

 4203303 invalid_request invalid operation - The API was used
with an invalid
ending path value

Repeat the request
using a valid path

 5000/
validate_client

5000103 invalid_request invalid parameters - The request did
not include the
client_key parameter

Repeat the request
including all required
parameters and/or
headers

 5000115 invalid_scope invalid scope was
requested

- the given SCOPE
for this client is not
valid

Repeat the request
using valid scope
values

 5000126 invalid_request invalid status - the expected client
status is not the
actual one

Verify that the client
has the expected
status

 5000127 invalid_request expired client id - The client id has
expired
- The client id has
been removed due
to its expiration

Check if your
requested values are
correct

 5000128 invalid_client invalid client name - The client_name is
invalid

Check if your
requested values are
correct

 193

 CA API Management OAuth Toolkit 4.3

 5000129 invalid_request invalid environment - The environment is
not valid
- The client has been
configured for a
different one

Check if the
environment for the
client id is configured
as expected

 5000130 invalid_request invalid client type - The client type is
not the actual one

Check if the client
type for the client
is configured as
expected

 5000201 invalid_request invalid client - The client_id is a
master-key
- The client_secret is
invalid

Check if your
requested values are
correct

 5000204 invalid_request invalid request - The requester did
not use mutual SSL

Repeat the request
using mutual SSL

 5000205 invalid_client invalid client
certificate

- The given client
certificate is
unknown

Repeat the
request using valid
credentials. If the
error still occurs
contact the system
administrator

 5001/
validate_token

5001000 invalid_request invalid

 5001103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters that were
empty

Repeat the request
including all required
parameters and/or
headers

 5001204 invalid_request invalid request - The requester did
not use mutual SSL

Repeat the request
using mutual SSL

 5001205 invalid_client invalid client
certificate

- The given client
certificate is
unknown

Repeat the
request using valid
credentials. If the
error still occurs
contact the system
administrator

 5001990 invalid_request invalid access_token - The token has
expired
- The token does not
exist

Request a new token

 5001991 invalid_request invalid access_token - The token has not
been granted for the
required SCOPE

Request a new
token that is scoped
accordingly

 194

 CA API Management OAuth Toolkit 4.3

 5001992 invalid_request invalid access_token - No access_token
was included in the
request
- An access_token
was included more
than once

Use the
access_token
either within the
authorization header,
as query parameter
or as post body
parameter

 5001993 invalid_request invalid token - The token is
disabled which
means that
associated client is
disabled

The token (client)
has to be enabled or
revoked and a new
one requested.

 5002/
validate_refresh_token

5002103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters that were
empty

Repeat the request
including all required
parameters and/or
headers

 5002115 invalid_scope invalid scope was
requested

- No scope value
matched a valid one
for this refresh_token

Repeat the request
using valid scope
values

 5002117 unauthorized_client unauthorized client
for this request

- The refresh_token
has been issued to a
different client_id

Repeat the request
using a valid client

 5002204 invalid_request invalid request - The requester did
not use mutual SSL

Repeat the request
using mutual SSL

 5002205 invalid_client invalid client
certificate

- The given client
certificate is
unknown

Repeat the
request using valid
credentials. If the
error still occurs
contact the system
administrator

 5002990 invalid_request invalid access_token - The token has
expired
- The token does not
exist

Request a new token

 5002993 invalid_request invalid token - The token is
disabled which
means that
associated client is
disabled

The token (client)
has to be enabled or
revoked and a new
one requested.

 195

 CA API Management OAuth Toolkit 4.3

 5003/
token_revocation

5003103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters that were
empty

Repeat the request
including all required
parameters and/or
headers

 5003117 unauthorized_client unauthorized client
for this request

- The token has been
issued to a different
client_id

Repeat the request
using a valid client

 5003118 unsupported token
type

unsupported token
type

- The values for
token_type_hint
must either be
'access_token' or
'refresh_token'

Repeat the
request using the
correct value for
token_type_hint

 5003204 invalid_request invalid request - The requester did
not use mutual SSL

Repeat the request
using mutual SSL

 5003205 invalid_client invalid client
certificate

- The given client
certificate is
unknown

Repeat the
request using valid
credentials. If the
error still occurs
contact the system
administrator

 5004/
validate_id_token,
create_id_token

5004103 invalid_request invalid parameters - The request did not
include headers and/
or parameters as
specified for the API
- The request
included duplicate
parameters
- The request
included required
headers or
parameters that were
empty

Repeat the request
including all required
parameters and/or
headers

 5004117 unauthorized_client unauthorized client
for this request

- The token has been
issued to a different
recipient

Repeat the request
using a valid client or
request a valid JWT

 5004120 invalid_request invalid id_token - The id_token has
expired
- The id_token has
missing claims

Repeat the request
including a valid
id_token

 196

 CA API Management OAuth Toolkit 4.3

 5004121 invalid_request invalid JWT - The JWT has an
invalid signature
- The JWT has
been created with
a different shared
secret

Repeat the request
using a valid JWT

 5004122 invalid_request invalid JWT/
id_token request

- If an access_token
was given a nonce
has to be available
also
- If the id_token had
other missing claims
- If the JWT's
signature could not
be created

Repeat the request
including valid
values for creating
the JWT/ id_token

 5004131 invalid_request invalid id_token
request

- If an access_token
was given, a nonce
must be available

Repeat the request
including valid
values for creating
the id_token

 5004204 invalid_request invalid request - The requester did
not use mutual SSL

Repeat the request
using mutual SSL

 5004205 invalid_client invalid client
certificate

- The given client
certificate is
unknown

Repeat the
request using valid
credentials. If the
error still occurs
contact the system
administrator

 197

 CA API Management OAuth Toolkit 4.3

Database Maintenance
The Persistence Layer: MySQL or Oracle solution kit installed with the OTK Solution Kit creates a maintenance folder
containing pre-configured scheduled tasks. The tasks replace the need to run cron jobs to clean-up the database.

NOTE

These database maintenance tasks are not required for Cassandra databases. Cassandra databases mark
expired data with tombstones and schedule the data for subsequent removal.

The tasks remove the following expired items from OTK related database tables:

• oauth_client_key
• oauth_initiate
• oauth_token
• oauth_id_token

No configuration of these recurring tasks is required. They are pre-configured to run at scheduled intervals.

Configure Database Maintenance Tasks

You can modify how often a task is run, or add new tasks.

To configure the tasks for an OTK database (MySQL or Oracle):

1. In the Policy Manager tool bar, navigate to Tasks, Global Settings, Manage Scheduled Tasks.
A list of currently scheduled tasks appears.

2. Select any of the existing tasks.
3. Click Edit and modify the scheduled task properties. Click Add to create a new task.
4. Click OK.
5. Click Close.

Scheduled Task Properties

Setting What you should know...

Job Name

This name identifies the scheduled task.

Gateway Node Choose to run the task on All Nodes or One Node.
Policy Choose a policy to run.
Execution Time Choose whether the policy is recurring or executes one time only.

For recurring policies, select a simple time interval.
Clearing the "Enable" check box lets you temporarily suspend the
recurring job, while keeping ability to run one-time jobs.

 198

 CA API Management OAuth Toolkit 4.3

Setting What you should know...

Day of Week Select which day(s) of the week the schedule applies. If no days
are selected, then the task can run on any day of the week.

Note: Selecting any day of the week automatically disables the
"Day" setting under Advanced.

Execute policy with user To execute the policy using the credentials of a specified user, set
via the Select User button.

 199

 CA API Management OAuth Toolkit 4.3

OpenID Connect Implementation
OpenID Connect is installed by default with the CA API Gateway. The OpenID Connect endpoints are installed through
the OAuth Solution Kit.

Import Certificates

To complete the installation, import SSL certificates. Importing SSL certificates permits the Gateway to be used as a
client.

1. Select Tasks, Certificates, Keys and Secrets, Manage Certificates. The Manage Certificates dialog is displayed.
2. Select Add. The Add Certificate Wizard starts.
3. Select Retrieve via SSL Connection and type: https://localhost:8443/
4. Click Next.
5. You are warned about a hostname mismatch, Click Accept.The Certificate details are displayed.
6. Click Next.
7. Select the following check boxes:

Outbound SSL Connections
Signing Certificates for Outbound SSL Connections
Signing Client Certificates

8. Click Finish to complete the wizard.
9. Restart the Gateway:

service ssg restart

Configure the Callback URL of the Test Client

To configure the callback URL through the OAuth Manager:

1. Open a browser and navigate to:
https://<hostname>:8443/<instanceMod>/oauth/managerThe hostname is the hostname of the gateway. For example:
gateway.com
The optional instanceMod value distinguishes between multiple gateway instances on the same server.

2. Provide a username and password. The type of access you are granted depends on your user role.
3. Click Clients.
4. In client_ident column, locate the OpenID Connect Basic Client Profile client and click List Keys.

The key details are displayed.
5. Click Edit and then replace the Callback URL field with the protocol, hostname, port, and optional instance modifier of

your gateway.
Example: https://myGateway.com:8443/instanceMod

6. Click Save.

Run the Test Client

1. Open a browser and connect to one of the following URLs to open the OpenID Connect Test Client.

<Gateway>:8443/oauth/v2/client/bcp Basic Client Profile

<Gateway>:8443/oauth/v2/client/icp Implicit Client Profile
2. Click send. The browser is redirected to the authorization endpoint.
3. Provide the credentials of any user listed in the Internal Identity Provider of the Gateway. Click Login.

 200

 CA API Management OAuth Toolkit 4.3

4. Click Grant to continue.
Granting access allows the client to access to protected resources and personal information. Personal information is
accessed through the /userinfo OpenID Connect endpoint.
The browser is redirected back to the client. The client receives the following tokens:
– access_token (allows the client to access the personal information of the user)
– refresh_token
– id_token

5. Click Claims to access the "/userinfo" endpoint.
If the gateway is installed and working correctly, a JSON message containing several claims is returned.

Open ID Connect Implementation Details
The following is required for Open ID Authentication:

• The Gateway must be configured for token_type BEARER.
OpenID Connect is not available with other token types.

• The "DMZ, OAuth 2.0 and OpenID Connect endpoints" solution kit is installed.

The implementation uses a database to persist all data. The client stores the id_token using a "Store to Cache" assertion.

The following sections relate to OpenID Connect Implementation:

Implicit Flow

In the Implicit Flow, the access token and ID token are returned directly to the client, which may expose them to the user
and user applications. The Authorization Server does not perform Client Authentication.

The Implicit Flow is as follows:

1. The client prepares an authentication request containing the desired request parameters.
2. The client sends the request to the Authorization Server.
3. The Authorization Server authenticates the user.
4. The Authorization Server obtains user consent/authorization.
5. The Authorization Server sends the user back to the client with an access token and, if requested, an ID token.
6. The client validates the ID token and retrieves the subject identifier of the user.

Related response types:

• id_token
• id_token token

Authorization Code Flow

The Authorization Code Flow returns an Authorization Code to the client, which can then exchange it for an ID token
and an Access Token directly. No tokens are exposed. The Authorization Server can also authenticate the Client before
exchanging the Authorization Code for an Access Token.

The Authorization Code Flow is as follows:

1. The client prepares an authentication request containing the desired request parameters.
2. The client sends the request to the Authorization Server.
3. The Authorization Server authenticates the user.
4. The Authorization Server obtains user consent/authorization.

 201

 CA API Management OAuth Toolkit 4.3

5. The Authorization Server sends the user back to the client with an Authorization Code.
6. The client requests a response using the Authorization Code at the Token Endpoint.
7. The client receives a response that contains an ID Token and Access Token in the response body.
8. The client validates the ID token and retrieves the user's Subject Identifier.

Related response types:

• code

Hybrid Flow

When using the Hybrid Flow, some tokens are returned from the Authorization Endpoint and others are returned from the
Token Endpoint.

The Hybrid Flow is as follows:

1. The client prepares an Authentication Request containing the desired request parameters.
2. The client sends the request to the Authorization Server.
3. The Authorization Server Authenticates the user.
4. The Authorization Server obtains user consent/authorization.
5. The Authorization Server sends the user back to the client with an Authorization Code and, depending on the

Response Type, one or more additional parameters.
6. The client requests a response using the Authorization Code at the Token Endpoint.
7. The client receives a response that contains an ID Token and Access Token in the response body.
8. The client validates the ID Token and retrieves the user's Subject Identifier.

Related response types:

• code token
• code id_token
• code id_token token

Authentication Request Parameters

The following parameters can be included in the URL of an authorization request:

Request Parameters Values Notes
client_id Required.

The OAuth 2.0 client identifier of the
requesting client. Must be known to the
authorization server.

state String value A string ignored by the server that can be
used to track the session. Returned as
received.

nonce String value used to associate a Client
session with an ID Token, and to mitigate
replay attacks. Appears within the
id_token.For example: 124512:wot12hs5h
 Required if response_type = token
id_token.

 202

 CA API Management OAuth Toolkit 4.3

display Supported values:
• page
• social_login

Specifies how the Authorization Server
displays the authentication and consent
user interface pages. Default: pagepage –
An HTML page view is displayed to request
authentication and consent.social_login –
Supported in MAG installations only.
Provides options to authenticate using
social login credentials such as Facebook.
The response is a JSON message rather
than an HTML page.
Forwarded to the /authorize/login API.

id_token_hint Default: Contains the previously issued
id_token representing the current
resource_owner.
 Required when prompt=none.Forwarded
to the /authorize/login API with action=login

prompt Supported values:
• none
• login
• consent

A space separated list of values. The
prompt parameter specifies whether the
Authorization Server asks the end user for
re-authentication and consent. It is used to
make sure the user is still present for the
current session or to bring attention to the
request. Default: login consent
none – The server does not request user
authentication or consent if the user is
currently logged in and the client has
previously received requested grants.
Cannot be used with any other value,
otherwise an error is returned.login –
The user is prompted to provide login
credentials (username/password) for re-
authentication. If re-authentication fails, and
error is returned.
consent – The user is prompted to provide
consent. If no consent is provided, an error
is returned.

acr_values Indicates which Authentication Context
Class Reference (acr) classes are
acceptable for the user authentication.
Based on the requested acr claim
value, the Authorization Server can set
thresholds for allowing authentication,
requesting re-authentication, or denying
authentication.The value is forwarded to
the /authorize/login API where the accepted
values are defined and any thresholds
can be set. Values appear in order of
preference.

scope openid Required for all OpenID requests. The
client must have been registered with
"openid" as a valid scope value.
A client can request any additional scope,
but only registered scopes will be granted.

 203

 CA API Management OAuth Toolkit 4.3

response_type One of the following:
• code
• token id_token

Required.
Determines the authorization processing
flow.
code – indicates an Authorization Code is
returned (authorization flow).
token id_token – indicates an access
token is returned (implicit flow).
When response_type = token id_token,
nonce is required.

redirect_uri The response is sent to this URI.
MSSO Related
mag-identifier Represents a valid registered mobile

device.
Only supported when response_type =
code (authorization flow)
 Required for MAG clients.

PKCE Parameters- See Configure PKCE Support.

Related Endpoints

Endpoint Notes
/auth/oauth/v2/authorize Supports OpenID Connect parameters 'id_token_hint', 'acr_values'

For PKCE support:
Checks that code_challenge is present. If present, the
code_challenge_method must exist.
Adds code_challenge and code_challenge_method to the session
created with each authorization request.

/auth/oauth/v2/authorize/login Handles the login process during OAuth authentication for
response types

/auth/oauth/v2/authorize/consent Handles the consent process during OAuth authentication for
response types

/auth/oauth/v2/token Issues an access token.
For PKCE support:
Uses the authorization_code to look up the associated session.
If code_challenge exists, code_verifier must be provided as an
input.
Recalculates the code_challenge, from the code_verifier value
using the persisted code_challenge method.
Compares the calculated code_challenge to the persisted
code_challenge.

/oauth/validation/validate/v2/idtoken Used when a client uses the "code" flow and when a user session
must be validated.

/openid/connect/v1/client/* This endpoint implements the OpenID Connect test clients.
The policy can be modified to change the behavior of the test
clients. Client types are "Basic Client Profile" and "Implicit Client
Profile".

 204

 CA API Management OAuth Toolkit 4.3

/openid/connect/v1/userinfo This endpoint returns a JSON object containing claims defined
by OpenID Connect. The content of the result depends on the
granted SCOPE. The access_token used must be granted for the
SCOPE openid.
By default, this endpoint returns the same result for any request
except for the "sub" claim and the overall number of returned
claims. The number of claims depends on granted/ requested
SCOPE values. To change this default behavior, modify the policy
to retrieve user specific values from an LDAP identity provider.

NOTE

When using the Internet Explorer browser, a request to /openid/connect/v1/userinfo may cause the browser to
present a download menu. Internet Explorer does not support the application/json content type.

Generate and Validate an ID Token
This topic explains ID Token configuration, generating ID tokens with various signing algorithms, and validating of custom
ID tokens.

The OpenID Connect implementation contains additional assertions that are not found in the core system. In these
assertions, all text fields also support clusterwide properties and context variables. Any errors that are generated by these
assertions are described in detail in the Gateway Audit Events window.

To add the assertions to a custom policy, drag-and-drop the assertion from the Message Validation/Transformation
category in the Assertion tab.

Related tasks include:

NOTE

See the CA API Gateway documentation for additional information about the following topics:

• Encode Json Web Token Assertion
• Decode Json Web Token Assertion
• Private Key Properties

ID Token Configuration

The Encode Json Web Token assertion generates an id_token.

The OTK id_token Generation policy generates an id_token and exposes it as a JWT. The read-only policy is located
in OTK/Policy Fragments/manage/id_token.

The OTK id_token configuration policy contains context variables that are used for OTK id_token generation.

To set custom values for these variables, cut and paste the Set Context Variable assertions from the OTK id_token
configuration policy into the editable #OTK id_token configuration policy.

Context Variable Default Value Notes
iss https://${gateway.cluster.hostname}:8443 By default, the hostname of the Gateway is

used to create the iss URL value. Setting
the iss value is a post-installation task
for dual gateways. See Post-Installation
Tasks.

 205

https://techdocs.broadcom.com

 CA API Management OAuth Toolkit 4.3

id_token_signing_algorithm HS256 The value reflects the algorithm that the
OTK server uses to sign the JWT. The
policy logic checks to see if the algorithm is
HS256 or not.
Set to one of the following values:
• HS256 – default
• any other value representing your

chosen algorithm. For example, RS256

subject_type pairwise Set to one of the following values:
• public – provides the same sub value

to all clients. Sub value is the resource
owner name.

• pairwise – provides unique PPID
for sub identifier for each user,
client, iss combination. Used for
Dynamic Client Registration. Use with
the sector_identifier_uri
 is not yet supported. For client
registered through OpenID Connect
Dynamic Registration, the registered
subject_type will be used instead of the
context variable.

Generate an ID Token Using HS256 as a Signing Algorithm

HS256 is the default value for the id_token_signing_algorithm Context Variable set in the #OTK id_token
Configuration policy. Other than setting the iss, no additional configuration is required.

The HS256 signing algorithm is used for confidential OAuth clients. The shared secret is the client_secret which is known
by both the client and server. The secret is used as the key for both generating and validating the signature.

Generate an ID Token Using RS256 as a Signing Algorithm

RS256 is the default custom algorithm. Any algorithm other than HS256 is considered a custom algorithm. Custom
algorithms are configured in the OTK id_token Signing Algorithm - CUSTOM policy.

By default, an algorithm setting of RS256 uses the default SSL key on the Gateway for signing. However, we recommend
that you create a new dedicated private key to sign id_tokens.

The private key that generates the signature is associated with a trusted public certificate that validates the signature. You
create the private key, then create the trusted certificate.

1. Open the #OTK id_token configuration policy.
2. Add a Set Context Variable assertion with the name: id_token_signing_algorithm
3. For Expression type: RS256. Select OK.
4. Save and Activate.
5. Create a private key to sign the id_token.

a. Go to Tasks > Certificate, Keys, and Secrets > Manage Private Keys.The list of existing private keys appears.
b. Select Create.
c. Provide the Alias (name) and select Create. Optionally, select the Advanced tab and select a Signature

Hash.For more information about creating a private key, see the Private Key Properties topic in the CA API
Gateway documentation.

6. Create the trusted certificate with the same name as the private key.
a. Go to Tasks > Certificate, Keys, and Secrets > Manage Certificates.

 206

https://techdocs.broadcom.com
https://techdocs.broadcom.com

 CA API Management OAuth Toolkit 4.3

b. Select Add.
c. Select Import from Private Key's Certificate Chain.

Select Next.
d. The certificate details appear.

Select Next.
e. Select the top three certificate usage options.

Select Next.
f. Select Certificate is a Trust Anchor.

Select Finish.
7. Open the OTK id_token Signing Algorithm - CUSTOM policy. Locate the policy in OTK/Customizations/id_token.
8. For both occurrences of the Encode Json Web Token assertion perform the following tasks:

a. Double-click the Encode Json Web Token assertions.
b. Select the JWS tab.
c. For Private Key, select the private key you created for signing id_tokens. Use the same value for both assertions.

9. In the policy, find the assertion that sets the shared_secret value. Assign the name of the certificate that is associated
with the private key. The name is the same as the private key.

10. Save and Activate

Generate an ID Token Using Any Other Signing Algorithm

HS256 is the default algorithm. RS256 is the default custom algorithm. Supported custom algorithms are HS384, HS512,
ES256, ES384, ES512.

If any other signing algorithm is used, you must implement branches within the OTK id_token Signing Algorithm
- CUSTOM policy to check for the algorithm. Compare the variable against the id_token_signing_algorithm Context
Variable.

To use a custom signing algorithm:

1. Open the #OTK id_token Configuration policy.
2. Set the id_token_signing_algorithm variable to the name of your alternate algorithm. Save and Activate.
3. Open the OTK id_token Signing Algorithm - CUSTOM policy.
4. For both occurrences of the Encode Json Web Token assertion perform the following tasks:

a. Double-click the Encode Json Web Token assertions.
b. Configure JWS properties for the custom algorithm.

5. Select OK.
6. Save and Activate.

Validate an ID Token

The Decode Json Web Token assertion validates the signature of an id_token.

Validating Custom id_tokens (JWT) with a non-HS256 Algorithm

The OTK id_token validation - CUSTOM policy is executed when the following requirements are met:

• The decoded JWT issuer must match the iss value specified the #OTK id_token Configuration policy.
• The id_token_signing_algorithm Context Variable is set to anything other than HS256 in the #OTK id_token

Configuration policy.

To validate an id_tokens with non-HS256 Algorithm:

1. Open the OTK id_token Validation - CUSTOM policy. The policy contains a branch that checks if
the id_token_signing_algorithm is RS256 and uses the default SSL key of the Gateway as the shared

 207

 CA API Management OAuth Toolkit 4.3

secret. For
RS256, make edits in the existing branch. For other custom algorithms, create another branch for validation where the
Compare Variable for ${id_token_signing_algorithm} is equal your custom algorithm name.

2. Double-click the Compare Variable assertion for the ${shared_secret} variable. Unless you are using the default SSL
key for the Gateway as your shared secret, you must edit this field.Provide the name of the private key you created as
the comparison value.

3. Double-click the Decode Json Web Token assertion and configure properties that are used for validation.

Edit the Compare Variable assertions to reflect your customization.
Suggested settings:
Validation Method – Using Recipient Key From ListRecipient Key – Select the private key that you created

4. Select OK to close the assertion properties.
5. Save and Activate.

Validating Custom id_tokens (JWT) Issued by a Third Party

The OTK id_token Validation - CUSTOM ISS policy is executed when the decoded JWT issuer does not match the iss
value specified in the #OTK id_token Configuration policy.

 208

 CA API Management OAuth Toolkit 4.3

Tasks to complete:

• Create a branch in the policy specific to your custom iss.
• If the id_token is signed using RS256, import the certificate of the third party as a trusted certificate to validate the

JWT.

Follow the comments in the OTK id_token Validation - CUSTOM ISS policy.

OpenID Connect Discovery
The OpenID Connect Discovery endpoint provides a client with configuration details about the OpenID Connect
Authorization Server. The client makes an HTTP GET call to the discovery endpoint: /.well-known/openid-
configuration. A discovery document is returned containing the OpenID Connect implementation details.

Each configuration detail is known as a claim. Claims include support capabilities and OAuth 2.0 endpoint locations that
allow the client to self register and interact with the Authorization server.

The discovery endpoint follows the specification that is defined at http://openid.net/specs/openid-connect-
discovery-1_0.html#ProviderMetadata.

For the swagger file describing the endpoint, see OAuth Server API Endpoints.

Perform the following tasks related to OpenID Connect Discovery:

Retrieve the Discovery Document

The discovery endpoint returns discovery document as a JSON object:

https://<example.ca.com>:8443/<instanceModifier>/.well-known/openid-configuration

Where:

• <example.ca.com> is the hostname of the Gateway.
• <instanceModifier> is any optional instance modifier (prefix) added when the OTK policies were installed.

The JSON object includes claims expressed as key-value pairs that describe the OpenID Connect Server configuration.

The following example code shows the default values for claims as set in the read-only policies.

{
 "issuer": "http://example.ca.com",
 "authorization_endpoint": "https://example.ca.com:8443/auth/oauth/v2/authorize",
 "token_endpoint": "https://example.ca.com:8443/auth/oauth/v2/token",
 "jwks_uri": "https://example.ca.com:8443/openid/connect/jwks.json",
 "response_types_supported": ["code", "token id_token", "token", "code id_token",
 "id_token", "code token", "code token id_token"],
 "subject_types_supported": ["pairwise"],
 "id_token_signing_alg_values_supported": ["RS256", "HS256"],
 "userinfo_endpoint": "https://example.ca.com:8443/openid/connect/v1/userinfo",
 "registration_endpoint": "https://example.ca.com:8443/openid/connect/register",
 "scopes_supported": ["openid", "email", "profile", "oidc_client_registration"],
 "claims_supported": ["sub", "iss", "auth_time", "acr", "aud", "azp", "exp", "c_hash",
 "at_hash", "nonce"],
 "grant_types_supported": ["authorization_code", "implicit", "refresh_token"],
 "acr_values_supported": ["0"],

 209

http://openid.net/specs/openid-connect-discovery-1_0.html#ProviderMetadata
http://openid.net/specs/openid-connect-discovery-1_0.html#ProviderMetadata

 CA API Management OAuth Toolkit 4.3

 "token_endpoint_auth_methods_supported": ["client_secret_basic", "client_secret_post",
 "client_secret_jwt", "private_key_jwt"],
 "display_values_supported": ["page"],
 "claim_types_supported": ["normal"],
 "service_documentation": "https://example.ca.com:8443/apidocs/auth/oauth/v2/swagger",
 "ui_locales_supported": ["en-US"],
"response_modes_supported":["query", "fragment", "form_post"],
"userinfo_signing_alg_values_supported":["RS256", "HS256"],
}

Configure claims by providing custom values for the corresponding Context Variables in the #policies.

Parameter Notes
response_types_supported Defines the set of allowed response types for authorization

requests. If a client registers dynamically through the OIDC
Dynamic Registration, only registered response_types can
be used, and only if they are a subset of the set of allowed
response_types. See Dynamic Registration.

Configure OpenID Connect Discovery

Default settings for the OpenID Connect Discovery claims are set in read-only policies located in:

OTK/Policy Fragments/configuration/Discovery Endpoint.

Claims are defined as required, recommended, or optional by the OpenID Connect specification. These categories are
reflected in the Policy Manager folder structure under OTK/Customizations/Discovery Endpoint.

Configure a Custom Value for a Claim

To configure custom values for a claim:

1. In Policy Manager, go to OTK/Customizations/Discovery Endpoint.
2. Open the OPTIONAL, RECOMMENDED, and REQUIRED sub-folders.
3. Find the #policy with the same name as the claim.

For example, to configure grant_types, open the #OTK openid grant_types_supported policy.
4. Read the comments that describe a value example, and list any restrictions.
5. Enable any disabled assertions in the #policy. By default, the Set Context Variable assertions for customizing claims

are disabled.
6. Double-click the Set Context Variable assertion for the context variable.
7. Provide your custom value or values by customizing the Expression field of the context variable. Add new values or

remove existing values.
8. Click OK.
9. Save and Activate the policy.

 210

 CA API Management OAuth Toolkit 4.3

NOTE

By default, the JSON document response is cached for 300 seconds. Any changes made to #policies in the
Customizations folder only take effect after the cache time expires.

For information on how to modify the cache lifetime, see Customize Caches.

The cacheID is oidcDiscoveryCache.
The cacheKey is oidcDiscoveryCache.
The maxEntryAge is 300.

Disable a Claim

By default, all supported claims are exposed through the discovery document. If you do not want a claim exposed to a
client, disable the claim in the #policy.

NOTE

Do not disable required claims. Required claims are located in #policies within the REQUIRED folder.

To disable a claim:

1. Open the #policy that corresponds to the name of the claim.
2. Double-click the Set Context Variable assertion for discovery.endpoint.enabled.
3. Set the Expression to false.
4. Click OK.
5. Save and Activate the policy.

Dynamically Register a Client

 /openid/connect/register

See Dynamic Registration.

Enable Logging for the Discovery Endpoint

By default, logging is turned off (false).

To enable logging, enable assertions and configure Context Variables in the #policy.

#Policy Context Variables Values Notes
#OTK openid
discovery_endpoint DEBUG

${debugOnSuccess}
${debugOnError}

true
true

Enable detailed logs for each
invocation of the OpenID
Connect Discovery Endpoint.
Enable detailed logs for each
invocation of the OpenID
Connect Discovery Endpoint
that results in an error
If either variable is enabled,
data is exported to capture the
Discovery claims and whether
they are exposed.

 211

 CA API Management OAuth Toolkit 4.3

Dynamic Registration
/openid/connect/register

The /openid/connect/register API implements the Dynamic Registration feature as specified at http://openid.net/specs/
openid-connect-registration-1_0.html. Clients accessing this API can register themselves as OAuth clients for this OpenID
Connect Provider.

The API generates an access_token with the openid_client_registration scope. This access token can be used at the
API specified as “registration_client_uri” in the response of this API.

Supported Claims

The tables in this section list supported claims.

The following restrictions apply to dynamic registrations:

• The API accepts only those requested claim values that are specified in the JSON response of the discovery endpoint.
See OpenID Connect Discovery. Unsupported values are set to default values.

• Clients can only be registered once with the same values
• The following characters are not accepted for registrations and result in a failed request: <>& and \

OpenID Connect Specified Claims

For claim details, see the OpenID Connect specification: http://openid.net/specs/openid-connect-registration-1_0.html.

Supported Claims Notes
redirect_uris The

 redirect_uris

 claim is required.
The following restrictions apply to the redirect_uri value:
- For application_type: web, only the https:// scheme is allowed.
The hostname cannot be localhost.
- For application_type: native, only custom schemes are
allowed. The http:// scheme is accepted only if the hostname
is localhost.

- No anchors (#) are allowed.
response_types

grant_types

application_type

contacts

client_name

sector_identifier_uri The expected implementation of a unique sub value for each
sector identifier when pairwise subject identifiers are used is not
yet supported.

subject_type Options include:
• pairwise – however, use with the

sector_identifier_uri is not yet supported.
• publicI

 212

http://openid.net/specs/openid-connect-registration-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html
https://techdocs.broadcom.com
http://openid.net/specs/openid-connect-registration-1_0.html

 CA API Management OAuth Toolkit 4.3

id_token_signed_response_alg The JWS algorithm that is used to sign the ID Token that is issued
to this Client. The value can be either HS256 or RS256. If the
value is omitted, RS256 is set.

The algorithm value for id_token_signed_reponse_alg
must match the algorithm value that is configured in ID Token
Configuration section.

userinfo_signed_response_alg

token_endpoint_auth_methods Supported options include:
• client_secret_post
• client_secret_basic
• client_secret_jwt – To validate the JWT, the OTK has the

client_secret value.
• private_key_jwt – The OTK has the matching public key.

token_endpoint_auth_signing_alg The JWS algorithm that is used to sign the JWT that is used to
authenticate the Client.
One of the following values:
• HS256
• RS256
Valid when the token_endpoint_auth_method is
either private_key_jwt or client_secret_jwt.

jwks_uri URL for the Client JSON Web Key Set document.
Available when token_endpoint_auth_methods is set to
private_key_jwt.Cannot be passed in with
jwks

.

jwks Client JSON Web Key Set document, passed by value. Cannot be
passed in with
jwks_uri

.

Proprietary Claims

The following table lists supported proprietary claims.

Proprietary Claim Notes Default Value

scope A custom scope. If a scope is provided, it
must be supported on the server.

openid email profile
openid_client_registration

organization The organization of the requestor The given organization of the client.
If no organization is provided, the first
redirect_uri is used as the value.

description A description for this client "Registered via OpenID Connect Dynamic
Registration"

environment The development environment of the client.
For example: iOS.

ALL

 213

 CA API Management OAuth Toolkit 4.3

Proprietary Claim Notes Default Value

master This value identifies the client as being
used as a “master-key”. The feature is
applicable to CA Mobile API Gateway
clients only.
 A client with a master key can retrieve
client credentials at /connect/client/initialize.
The client_id of this client cannot be used to
request an OAuth token. The client_secret
generated for this client intentionally
matches the value of the client_id.

false

Unsupported Claims

The following table lists claims that are not supported in the current implementation of dynamic client registration. These
claims are defined as optional in the OpenID Connect specification.

Unsupported Claims
logo_uri request_object_signing_alg

client_uri request_object_encryption_alg

policy_uri request_object_encryption_enc

tos_uri token_endpoint_auth_signing_alg

id_token_encrypted_response_alg default_max_age

id_token_encrypted_response_enc reguire_auth_time

userinfo_encrypted_response_alg default_acr_values

userinfo_encrypted_response_enc initiate_login_uri

request_uris

Registration Success Response

A successful registration POST request returns a response that includes generated values such as the client_id and
client_secret.

Response Example
*** Response ***

Status Line: HTTP/1.1 201 Created

Response Header: Server: Apache-Coyote/1.1

Response Header: Content-Type: application/json;charset=UTF-8

Response Header: Content-Length: 1131

Response Header: Date: Wed, 02 Aug 2017 17:49:30 GMT

Response Body:

{

 "client_id": "2220d66d-ccd6-4616-96c6-10c8b6cf3844",

 "client_secret": "9f03bc93-12d7-4c48-b4ab-fa17fd02931d",

 "client_secret_expires_at": 0,

 "client_id_issued_at": 1501871110,

 "registration_access_token": "b39ba851-0375-4fee-851b-2f71072e966d",

 "registration_client_uri": "https://myGateway.com:8443/openid/connect/register/2220d66d-

ccd6-4616-96c6-10c8b6cf3844",

 "token_endpoint_auth_method": "client_secret_basic",

 "application_type": "web",

 214

 CA API Management OAuth Toolkit 4.3

 "redirect_uris": ["https://dynamic-client-001-test.com"],

 "client_name": "https://dynamic-client-001-test.com-2017-08-04T18:25:10.852Z",

 "subject_type": "pairwise",

 "sector_identifier_uri": "",

 "contacts": ["admin"],

 "response_types": ["code"],

 "grant_types": ["authorization_code"],

 "id_token_signed_response_alg": "RS256",

 "userinfo_signed_response_alg": "RS256",

 "environment": "ALL",

 "organization": "https://dynamic-client-001-test.com",

 "master": false,

 "description": "Registered via OpenID Connect Dynamic Registration",

 "scope": "openid email profile openid_client_registration"

}

Retrieve Client Configuration

Using a GET request, the client configuration is available at the /openid/connect/register/{client_id} API.

The client uses the issued access_token as credentials and the issued client_id as the path element.

Request Example
Request Method: GET

Request URI: /openid/connect/register/d71d768f-a121-445e-85a4-1234abcde123

Request Header: authorization: Bearer 12328230-afd7-4303-9b06-b744462dsf06a

Request Header: User-Agent: Jakarta Commons-HttpClient/3.1

Request Header: Host: mygateway.com

Request Query: null

Response Example
{

 "subject_type": "pairwise",

 "grant_types": ["authorization_code"],

 "application_type": "web",

 "description": "Registered via OpenID Connect Dynamic Registration",

 "registration_client_uri": "https://myGateway.com:8443/openid/connect/register/2220d66d-

ccd6-4616-96c6-10c8b6cf3844",

 "redirect_uris": ["https://dynamic-client-001-test.com"],

 "sector_identifier_uri": "",

 "client_id": "2220d66d-ccd6-4616-96c6-10c8b6cf3844",

 "token_endpoint_auth_method": "client_secret_basic",

 "userinfo_signed_response_alg": "RS256",

 "master": false,

 "environment": "ALL",

 "client_secret_expires_at": 0,

 "organization": "https://dynamic-client-001-test.com",

 "scope": "openid email profile openid_client_registration",

 "client_secret": "9f03bc93-12d7-4c48-b4ab-fa17fd02931d",

 "client_id_issued_at": 1501871110,

 "client_name": "https://dynamic-client-001-test.com-2017-08-04T18:25:10.852Z",

 "contacts": ["admin"],

 "response_types": ["code"],

 215

 CA API Management OAuth Toolkit 4.3

 "id_token_signed_response_alg": "RS256"

}

Retrieve the JSON Web Key Set (JWKS)
/openid/connect/jwks.json

The /openid/connect/jwks.json API implements the JWKS_URI as specified at http://openid.net/specs/openid-connect-
discovery-1_0.html#ProviderMetadata. The endpoint returns a JWKS containing public keys that enable clients to validate
a JSON Web Token (JWT) issued by this OpenID Connect Provider. The details of the response can be modified and
adjusted to fit the environment.

{

 "keys" : [{

 "kty" : "RSA",

 "kid" : "11234oi3mmaets3basti3nss3",

 "use" : "sig",

 "n" : "k9-F-fE4RWeyvErnyQhdbGO-468-

UYq9uoEmxZFWxxPEbfYB0A01FAxnD5efA-6rZ

 "e" : "AQAB"

}]

}

The Authorization server can change keys. If the client fails to recognize the key ID (kid) of the JWT, the client can retrieve
the new public key set from the JWKS_URI endpoint.

To configure this endpoint, see Use a Dedicated Private Key for Signing JWT.

Use a Dedicated Private Key for Signing JWT
The OTK supports signing as described in the OpenID Connect specification defined in http://openid.net/specs/openid-
connect-core-1_0.html#Signing.

The default SSL key is used to sign the id_token/JWT. It is recommended to use your own dedicated private key.

The following tasks describe how to sign the id_tokens with a dedicated private key that does not use the HS256 signing
algorithm:

Create a Private Key

To create a private key:

1. In the Policy Manager, go to Tasks > Certificates, Keys and Secrets > Manage Private Keys.
2. Click Create.
3. Click Alias and type a name for the private key. To aid key management, consider using the same value for both alias

and key ID. Key ID is assigned in a later step.
4. Click Key type and select an algorithm.
5. Optionally set other Basic or Advanced parameters. The key does not have to be CA capable.
6. Click Create.

 216

http://openid.net/specs/openid-connect-discovery-1_0.html#ProviderMetadata
http://openid.net/specs/openid-connect-discovery-1_0.html#ProviderMetadata
http://openid.net/specs/openid-connect-core-1_0.html#Signing
http://openid.net/specs/openid-connect-core-1_0.html#Signing

 CA API Management OAuth Toolkit 4.3

The key appears in the Manage Private Keys list.

Create a JWK From the Private Key

Now you use the private key to create the JWK used for signing the id_token/JWT.

To create a JWK:

1. Open the OTK openid jwks_endpoint Configuration policy in OTK/Customizations/JWKs Endpoint.

2. Copy the Create Json Web Key assertion. Use Right-click > Copy.

This assertion instance uses the default_ssl_key to output the jwks variable.
3. Open the #OTK openid jwks_endpoint Configuration policy.
4. Paste the Create Json Web assertion.
5. Double-click the assertion to access properties.
6. Click Add.
7. For Recipient Public Key, select a private key.
8. Assign a Key ID value. The Key ID value is referenced as the "kid" in the policies and appears in the JWT header

when the JWT is issued.
Consider using the alias value as the Key ID value. Using the same value allows you to find the private key associated
with the kid easily.

9. Copy the Key ID value. You need this value to customize policies.
10. For Key Usage, select Signature.
11. Click OK.

The new private key appears listed.
12. Click OK to close the Create Json Web Key Properties dialog.
13. Save and Activate.

Configure the Key ID

By default, the kid value is "default SSL key" and is used in the kid header.

To configure the kid:

1. Open the OTK id_token KID Configuration policy. Locate the policy in the OTK/Policy Fragments/manage/id_token
folder.

2. Copy the Set Context Variable kid assertion.
3. Open the #OTK id_token KID Configuration policy.
4. Paste the assertion.
5. Double-click the assertion.
6. Replace the default_ssl_key value with your kid value.

 217

 CA API Management OAuth Toolkit 4.3

7. Click OK.
8. Save and Activate.

Optionally, using the same policy and #policy, you can customize how the kid_header is formed.

Generate the id_token Signed with the JWK

By default, the id_token is generated using the default SSL key. Change this behavior by modifying the OTK id_token
Signing Algorithm - CUSTOM policy.

NOTE

The OTK id_token Signing Algorithm - CUSTOM policy is an extension policy in the Customizations folder that is
not replaced during an upgrade.

If you have an earlier version of this policy than OTK 4.1, see Manually Replace the Pre-OTK4.1 Version.

To generate the id_token from the JWK:

1. Open the OTK id_token Signing Algorithm - CUSTOM policy and expand the folders.
2. Perform the following steps for both Encode Json Web Token assertions in the policy:

a. Select the JWS tab
b. For Private Key, select the private key associated with the Key ID value. If you used the same value, this is easier.

c. Click OK.

3. Save and Activate.

Manually Replace the Pre-OTK4.1 Version

The OTK id_token Signing Algorithm - CUSTOM policy is an extension policy in the Customizations folder that is not
replaced during an upgrade.

If you have the 4.0.00 version of this policy:

1. Right-click the following XML icon, select Save link as and download the 4.1 version of this extension policy.
 #unique_147

2. Delete all contents of the OTK id_token Signing Policy version 4.0.
3. Import the new 4.1 version.
4. Perform the modifications described in these instructions.

 218

 CA API Management OAuth Toolkit 4.3

Validate the id_token with the JWK

By default, the id_token is validated using the default SSL Key.

To validate the id_token using the JWK:

1. Open the OTK id_token Validation - CUSTOM policy.
Expand the folders.

2. Double-click the Compare Variable for ${shared_secret} assertion.
3. Edit the Rule to read: "is equal to ${kid}"
4. Double-click the Decode Json Web Token assertion.
5. For Recipient Key select the alias of your private key.
6. Save and Activate.

 219

 CA API Management OAuth Toolkit 4.3

OTK User Role Configuration
You can add a username to a list of known administrators.

The OTK User Attribute Look Up Extension policy targets the OTK User Attribute Look Up policy.

The OTK User Authentication encapsulated assertion found in OTK/Policy Fragments/authentication contains the
following default user names associated with the administrator role:

• admin
• pmadmin
• administrator

The administrator role has a global view of clients, while the user role can see only their own clients.

To add a custom username to the administrator list:

1. Open the OTK User Attribute Look Up Extension policy.
2. Double-click the Compare Variable ${given_username} assertion.

3. Select the existing rule and click Edit.
4. Modify the Regular Expression by adding a pipe separator character | then typing the username to be assigned the

administrator role.
5. Click OK.
6. Click OK again to close the Compare Expression Properties dialog.
7. Save and Activate.

 220

 CA API Management OAuth Toolkit 4.3

Tutorials
How to Install and Configure the OAuth Toolkit:

Part 1

Part 2

 221

https://www.youtube.com/watch?time_continue=1&v=a0J7cRWr83Y
https://www.youtube.com/watch?v=j44TinuXTI0

 CA API Management OAuth Toolkit 4.3

Documentation Legal Notice
This Documentation, which includes embedded help systems and electronically distributed materials, (hereinafter referred
to as the “Documentation”) is for your informational purposes only and is subject to change or withdrawal by Broadcom
at any time. This Documentation is proprietary information of Broadcom and may not be copied, transferred, reproduced,
disclosed, modified or duplicated, in whole or in part, without the prior written consent of Broadcom.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection
with that software, provided that all Broadcom copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the
applicable license for such software remains in full force and effect. Should the license terminate for any reason, it is your
responsibility to certify in writing to Broadcom that all copies and partial copies of the Documentation have been returned
to Broadcom or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL
CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM
THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST INVESTMENT,
BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF
THE POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and
such license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is Broadcom Inc.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the
restrictions set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)
(3), as applicable, or their successors.

Copyright © Broadcom. All Rights Reserved. The term “Broadcom” refers to Broadcom Inc. and/or its subsidiaries. All
trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

 222

	CA API Management OAuth Toolkit 4.3
	Table of Contents
	Release Notes
	Download OTK Installation Files
	Product Accessibility Features
	Architecture
	Installation Workflow
	Create or Upgrade the OTK Database
	MySQL Database
	Oracle Database
	Apache Cassandra Database

	Create Database Connections
	Install the OAuth Solution Kit
	Dual Gateway Scenario
	Install OTK with API Portal Integration

	Post-Installation Tasks
	Post-Installation Tasks for the Dual Gateway Scenario
	Update Custom 3.x or 4.0.00 Policies Containing the Decode Json Web Token

	Configure Authentication
	Token Configuration
	Configure JWT Access Tokens

	Client Authentication
	Create FIP Authentication for Dual Gateways
	Login and Consent Behavior
	Multiple Session Support
	Support Custom Grant Types
	Support Optional Authentication Mechanisms
	Support the SAML Grant Type

	Verify the Installation
	Run the OAuth 2.0 Test Client
	Verify the OAuth Infrastructure

	Troubleshooting

	Upgrade the OTK
	Uninstall the OTK
	Prepare JSON Message for Export
	JSON Message Example

	Secure an API Endpoint with OAuth 2.0
	OAuth Request Scenarios
	Customizing the OAuth ToolKit
	Customizing Policies
	Configure Token Lifetime Properties
	Client-Specific Customization
	Configure the Authorization Server
	Configure PKCE Support
	Provide Enhanced HTML Form Security
	Customize Caches
	Set an Alternative HTTPS Port

	Registering Clients with the OAuth Manager
	Manage OAuth Clients with CA API Portal
	APIs and Assertions
	OAuth Server API Endpoints
	OAuth Toolkit APIs
	OAuth Validation Point (OVP) API
	CORS Support for OTK APIs

	OAuth Client Assertions
	Encapsulated Assertions
	Error Codes

	Database Maintenance
	OpenID Connect Implementation
	Open ID Connect Implementation Details
	Generate and Validate an ID Token
	OpenID Connect Discovery
	Dynamic Registration
	Retrieve the JSON Web Key Set (JWKS)
	Use a Dedicated Private Key for Signing JWT

	OTK User Role Configuration
	Tutorials
	Documentation Legal Notice

